Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060504    DOI: 10.1088/1674-1056/22/6/060504
GENERAL Prev   Next  

Modeling and simulation of high-speed passenger train movements in the rail line

Cao Cheng-Xuan (曹成铉), Xu Yan (许琰), Li Ke-Ping (李克平)
State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
Abstract  In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of high-speed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger trains operations can greatly reduce the delay propagation in the high-speed rail line when the random delay occurs.
Keywords:  simulation      dynamic model      control strategies of train movements      high-speed passenger train  
Received:  18 October 2012      Revised:  05 March 2013      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  89.40.Bb (Land transportation)  
  05.60.-k (Transport processes)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB725400), the National Natural Science Foundation of China (Grant No. 71131001-1), and the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China (Grant Nos. RCS2012ZZ001 and RCS2012ZT001).
Corresponding Authors:  Cao Cheng-Xuan     E-mail:  cxcao@bjtu.edu.cn

Cite this article: 

Cao Cheng-Xuan (曹成铉), Xu Yan (许琰), Li Ke-Ping (李克平) Modeling and simulation of high-speed passenger train movements in the rail line 2013 Chin. Phys. B 22 060504

[1] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[2] Helbing D 2001 Rev. Mod. Phys. 73 1067
[3] Chowdhury D, Santen L and Schadscheider A 2000 Phys. Rep. 329 199
[4] Kerner B S 2004 The Physics of Traffic (Heidelberg: Springer)
[5] Zhou H L, Gao Z Y and Li K P 2006 Acta Phys. Sin. 55 1706 (in Chinese)
[6] Xun J, Ning B and Li K P 2007 Acta Phys. Sin. 56 5158 (in Chinese)
[7] Yang L X, Li F, Gao Z Y and Li K P 2010 Chin. Phys. B 19 100510
[8] Wang M, Zeng J W, Qian Y S, Li W J, Yang F and Jia X X 2012 Chin. Phys. B 21 070502
[9] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[10] Ben-Naim E, Krapivsky P L and Redner S 1994 Phys. Rev. E 50 822
[11] Tomer E, Safonov L and Havlin S 2000 Phys. Rev. Lett. 84 382
[12] Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[13] Lee H K, Lee H W and Kim D 2001 Phys. Rev. E 64 056126
[14] Lubashevsky I, Kalenkov S and Mahnke R 2002 Phys. Rev. E 65 036140
[15] Lubashevsky I, Mahnke R, Wagner P and Kalenkov S 2002 Phys. Rev. E 66 016117
[16] Fang W, Yang L and Fan W 2003 Physica A 321 633
[17] Maniccam S 2003 Physica A 321 653
[18] O'loan O J, Evans M R and Cates M E 1998 Phys. Rev. E 58 1404
[19] Nagatani T 2001 Phys. Rev. E 63 036116
[20] Pearson L V 1997 Ph. D. Thesis Loughborough University of Technology, UK
[21] Huijberts H J C 2002 Physica A 308 489
[22] Nagatani T 2002 Phys. Rev. E 66 046103
[23] Safonov L A, Tomer E, Strygin V V, Ashkenazy Y and Havlin S 2002 Chaos 12 1006
[24] Brockfeld E, Barlovic R, Schadschneider A and Schreckenberg M 2001 Phys. Rev. E 64 056132
[25] Sasaki M and Nagatani T 2002 Physica A 325 531
[26] Kurata S and Nagatani T 2003 Physica A 318 537
[27] Nagel K, Wolf D F, Wagner P and Simon P 1998 Phys. Rev. E 58 1425
[28] Ge H X, Dai S Q, Dong L Y and Xue Y 2004 Phys. Rev. E 70 066134
[29] Ge H X, Dai S Q and Cheng R J 2005 Physica A 357 466
[30] Nagai R, Nagatani T and Yamada A 2005 Physica A 355 530
[31] Nagai R, Hanaura H, Tanaka K and Nagatani T 2006 Physica A 350 9348
[32] Li K P and Guan L J 2009 Chin. Phys. B 18 2200
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
No Suggested Reading articles found!