CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Near-infrared downconversion in Eu2+ and Pr3+ co-doped KSrPO4 phosphor |
Sun Jia-Yue (孙家跃), Sun Yi-Ning (孙翊宁), Zhu Ji-Cheng (朱吉成), Zeng Jun-Hui (曾军辉), Du Hai-Yan (杜海燕) |
School of Science, Beijing Technology and Business University, Beijing 100048, China |
|
|
Abstract A novel near-infrared (NIR) downconversion (DC) phosphor KSrPO4:Eu2+, Pr3+ is synthesized by the conventional high temperature solid-state reaction. The Eu2+ acts as an efficient sensitizer for Pr3+ in the KSrPO4 host. With broadband near-ultraviolet light excitation induced by the 4f→5d transition of Eu2+, the characteristic NIR emission of Pr3+, peaking at 974 nm and 1019 nm due to 3P0 →1G4 and 1G4 →3H4 transitions, is generated as a result of the energy transfer from Eu2+ to Pr3+. The luminescence spectra in both the visible and the NIR regions and the decay lifetime curves of Eu2+ prove the energy transfer from Eu2+ to Pr3+. This Eu2+ and Pr3+ co-doped KSrPO4 phosphor may be a promising candidate to modify the spectral mismatch behavior of crystalline solar cells and sunlight.
|
Received: 01 June 2012
Revised: 09 October 2012
Accepted manuscript online:
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
33.50.Dq
|
(Fluorescence and phosphorescence spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20976002), the Beijing Natural Science Foundation, China (Grant No. 2122012), and the Special Funding of the Ministry of Education of Guangdong Province, China (Grant No. 2011B090400100). |
Corresponding Authors:
Sun Jia-Yue
E-mail: jiayue_sun@126.com
|
Cite this article:
Sun Jia-Yue (孙家跃), Sun Yi-Ning (孙翊宁), Zhu Ji-Cheng (朱吉成), Zeng Jun-Hui (曾军辉), Du Hai-Yan (杜海燕) Near-infrared downconversion in Eu2+ and Pr3+ co-doped KSrPO4 phosphor 2013 Chin. Phys. B 22 057803
|
[1] |
Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
|
[2] |
Xiao W B, He X D, Zhang Z M, Gao Y Q and Liu J T 2012 Chin. Phys. B 21 067304
|
[3] |
Strumpel C, McCann M, Beaucarne G, Arkhipov V, Slaouic A, Svrcek V, Canizo C del and Tobias I 2007 Sol. Energy Mater. Sol. Cells 91 238
|
[4] |
Trupke T, Green M A and Wurfel P 2002 J. Appl. Phys. 92 1668
|
[5] |
Kringlebotn J T, Morkel P R, Reekie L, Archambault J L and Payne D N 1993 IEEE Photonics Technol. Lett. 5 1162
|
[6] |
Wegh R T, Donker H, Oskam K D and Meijerink A 1999 Science 283 663
|
[7] |
Kasuya R, Isobe T, Kuma H and Katano J 2005 J. Phys. Chem. B 109 22126
|
[8] |
Van der Ende B M, Aarts L and Meijerink A 2009 Phys. Chem. 11 11081
|
[9] |
Wei X T, Zhao J B, Chen Y H, Yin M and Li Y 2010 Chin. Phys. B 19 077804
|
[10] |
Qu M H, Wang R Z, Chen Y, Zhang Y, Li K Y and Yan H 2012 J. Lumin. 132 1285
|
[11] |
Zhou J J, Zhuang Y X, Ye S, Teng Y, Lin G, Zhu B, Xie J H and Qiu J R 2009 Appl. Phys. Lett. 95 141101
|
[12] |
Liu X F, Teng Y, Zhuang Y X, Xie J H, Qiao Y B, Dong G P, Chen D P and Qiu J R 2009 Opt. Lett. 34 3565
|
[13] |
Chen D Q, Wang Y S, Yu Y L, Huang P and Weng F Y 2008 J. Appl. Phys. 104 116103
|
[14] |
Ueda J and Tanabe S 2009 J. Appl. Phys. 106 043101
|
[15] |
Sommerdijk J, Bril A and de Jager A W 1974 J. Lumin. 8 341
|
[16] |
Trupke T, Green M A and Wurfel P 2002 J. Appl. Phys. 92 1668
|
[17] |
Richards B S 2006 Sol. Energy Mater. Sol. Cells 90 1189
|
[18] |
Strek W, Deren P and Bednarkiewicz A 2000 J. Lumin. 87 999
|
[19] |
Zhang Q Y, Yang G F and Jiang Z H 2007 Appl. Phys. Lett. 91 051903
|
[20] |
Wu Z C, Shi J X, Wang J, Gong M L and Su Q 2006 J. Solid State Chem. 179 2356
|
[21] |
Tang W J and Chen D H 2009 J. Am. Ceram. Soc. 92 1059
|
[22] |
Liu T C, Cheng B M, Hu S F and Liu R S 2011 Chem. Mater. 23 3698
|
[23] |
De Mello Donega C, Ellens A, Meijerink A and Blasse G 1993 J. Phys. Chem. Solids 54 293
|
[24] |
Chen Q J, Zhang W J, Huang X Y, Dong G P, Peng M Y and Zhan Q Y 2012 J. Alloys Compd. 513 139
|
[25] |
Zhang G G, Liu C M, Wang J, Kuang X J and Su Q 2012 J. Mater. Chem. 22 2226
|
[26] |
Xia Z G, Luo Y, Guan M and Liao L B 2012 Opt. Express 20 722
|
[27] |
Chen X B, Kang D G, Li S, Wen L, Yu C L, Hu L L and Zhou J 2011 Chin. Phys. B 20 027801
|
[28] |
Engholm M, Norin L and Aberg D 2007 Opt. Lett. 32 3352
|
[29] |
Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M and Meijerink A 2005 Phys. Rev. B 71 014119
|
[30] |
Zhou J J, Teng Y, Lin G, Xu X Q, Ma Z J and Qiu J R 2010 J. Electrochem. Soc. 157 B1146
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|