Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050512    DOI: 10.1088/1674-1056/22/5/050512
GENERAL Prev   Next  

A thermal entangled quantum refrigerator based on a two-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction in an external magnetic field

Wang Hao (汪浩), Wu Guo-Xing (吴国兴)
Tianhua College, Shanghai Normal University, Shanghai 201815, China
Abstract  Based on an isotropic two spin-1/2 qubits Heisenberg model with the Dzyaloshinskii-Moriya interaction in an external magnetic field, we have constructed an entangled quantum refrigerator. Expressions for the basic thermodynamic quantities, i.e., the heat exchanged, the net work input, and the coefficient of performance, are derived. Some intriguing features and their qualitative explanations in zero and non zero magnetic fields are given. The influence of the thermal entanglement on the refrigerator is investigated. The results obtained here have general significance and will be helpful to understand the performance of an entangled quantum refrigerator.
Keywords:  Heisenberg model      thermal entanglement      concurrence      entangled refrigerator  
Received:  24 August 2012      Revised:  13 November 2012      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  07.20.Pe (Heat engines; heat pumps; heat pipes)  
Fund: Project supported by the Program for Excellent Young Teachers Foundation of Shanghai, China (Grant No. thc-20100036).
Corresponding Authors:  Wang Hao     E-mail:  shnuwh@163.com

Cite this article: 

Wang Hao (汪浩), Wu Guo-Xing (吴国兴) A thermal entangled quantum refrigerator based on a two-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction in an external magnetic field 2013 Chin. Phys. B 22 050512

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Ye L and Guo G C 2002 Chin. Phys. 11 996
[3] Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Buek V and Hillery M 1996 Phys. Rev. A 54 1844
[6] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[7] Cui J, Gu M, Kwek L C, Santos M F, Fan H and Vedral V 2012 Nat. Commun. 3 812
[8] Wang X G 2002 Phys. Rev. A 66 034302
[9] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[10] Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[11] Kane B E 1998 Nature 393 133
[12] Vrijen R, Yablonovitch E, Wang K, Jiang H W, Balandin A, Roychowdhury V, Mor T and DiVincenzo D 2000 Phys. Rev. A 62 012306
[13] Sorensen A and Molmer K 1999 Phys. Rev. Lett. 83 2274
[14] Nielsen M A 1998 Quantum Information Theory (Ph.D. thesis) (Albuquerque: The University of New Mexico)
[15] Allahverdyan A E, Gracia R S and Nieuwenhuizen T M 2005 Phys. Rev. E 71 046106
[16] Feldmann T and Kosloff R 2003 Phys. Rev. E 68 016101
[17] Segal D and Nitzan A 2006 Phys. Rev. E 73 026109
[18] Erez N, Gordon G, Nest M and Kurizki G 2008 Nature 452 724
[19] Quan H T, Liu Y X, Sun C P and Nori F 2007 Phys. Rev. E 76 031105
[20] Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science 299 862
[21] Scully M O 2002 Phys. Rev. Lett. 88 050602
[22] Scully M O 2001 Phys. Rev. Lett. 87 220601
[23] Allahverdyan A E and Nieuwenhuizen T M 2000 Phys. Rev. Lett. 85 1799
[24] Quan H T, Wang Y D, Liu Y X, Sun C P and Nori F 2006 Phys. Rev. Lett. 97 180402
[25] Thomas G and Ramandeep S J 2011 Phys. Rev. E 83 031135
[26] Chotorlishvili L, Toklikishvili Z and Berakdar J 2011 J. Phys. A: Math. Theor. 44 165303
[27] Wang H, Liu S and He J 2009 Phys. Rev. E 79 041113
[28] Zhang T, Liu W, Chen P and Li C 2007 Phys. Rev. A 75 062102
[29] Zhang G F, 2008 Eur. Phys. J. D 49 123
[30] He J Z, He X and Zheng J 2012 Chin. Phys. B 21 050303
[31] Zheng J, He J Z and He X 2011 Commun. Theor. Phys. 56 301
[32] Wang H, Wu G X and Chen D J 2012 Phys. Scr. 86 015001
[33] He J Z, He X and Zheng J 2012 Int. J. Theor. Phys. 51 2066
[34] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[3] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[4] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[5] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[6] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[7] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[8] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[9] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[10] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c. Chin. Phys. B, 2020, 29(10): 107103.
[11] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[12] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[13] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[14] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[15] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
No Suggested Reading articles found!