|
|
Markov transition probability-based network from time series for characterizing experimental two-phase flow |
Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德) |
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China |
|
|
Abstract We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitatively characterizing the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
|
Received: 20 October 2012
Revised: 14 November 2012
Accepted manuscript online:
|
PACS:
|
05.45.Tp
|
(Time series analysis)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China ( Grant Nos. 61104148, 41174109, and 50974095), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05020-006), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032120088). |
Corresponding Authors:
Jin Ning-De
E-mail: ndjin@tju.edu.cn
|
Cite this article:
Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德) Markov transition probability-based network from time series for characterizing experimental two-phase flow 2013 Chin. Phys. B 22 050507
|
[1] |
Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
|
[2] |
Wang W X, Wang B H, Hu B, Yan G and Ou Q 2005 Phys. Rev. Lett. 94 188702
|
[3] |
Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
|
[4] |
Huang L, Park K, Lai Y C, Yang L and Yang K Q 2006 Phys. Rev. Lett. 97 164101
|
[5] |
Pan Z F, Li X and Wang X F 2006 Phys. Rev. E 73 056109
|
[6] |
Li X G, Gao Z Y, Li K P and Zhao X M 2007 Phys. Rev. E 76 016110
|
[7] |
Pei W D, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B 17 0373
|
[8] |
Zhou J, Lu J A and Lu J H 2008 Automatica 44 996
|
[9] |
Yu W, Cao J, Chen G, Lü J, Han J and Wei W 2009 IEEE Trans. Systems, Man, and Cybernetics-Part B 39 230
|
[10] |
Rong Z H, Wu Z X and Wang W X 2010 Phys. Rev. E 82 047101
|
[11] |
Duan Z S and Chen G R 2012 Chin. Phys. B 21 080506
|
[12] |
Lü L Y, Medo M, Ho Y C, Zhang Y C, Zhang Z K and Zhou T 2012 Physics Reports 519 1
|
[13] |
Zheng D F, Hui P M, Trimper S and Zheng B 2005 Physica A 352 659
|
[14] |
Jiang Z Q, Zhou W X, Xu B and Yuan W K 2007 AIChE Journal 53 423
|
[15] |
Zhang H F, Small M, Fu X C and Wang B H 2009 Chin. Phys. B 18 3639
|
[16] |
Guo J L 2010 Chin. Phys. B 19 120503
|
[17] |
Lu X B, Wang X F and Fang J Q 2010 Physica D 239 341
|
[18] |
Schneider C M, Moreira A A, Andrade Jr J S, Havlin S and Herrmann H J 2011 Proc. Natl. Acad. Sci. USA 108 3838
|
[19] |
Zhang C, Shen H Z, Li F and Yang H Q 2012 Acta Phys. Sin. 61 148902 (in Chinese)
|
[20] |
Wang D L, Yu Z G and Anh V 2012 Chin. Phys. B 21 080504
|
[21] |
Yao H X and Wang S G 2012 Chin. Phys. B 21 110506
|
[22] |
Sun W, Chen Z and Kang Y H 2012 Chin. Phys. B 21 010504
|
[23] |
Gao J X, Buldyrev S V, Stanley H E and Havlin S 2012 Nature Phys. 8 40
|
[24] |
Provata A and Beck C 2012 Phys. Rev. E 286 046101
|
[25] |
Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701
|
[26] |
Zhang J, Sun J, Luo X, Zhang K, Nakamura T and Small M 2008 Physica D 237 2856
|
[27] |
Yang Y and Yang H J 2008 Physica A 387 1381
|
[28] |
Lacasa L, Luque B, Ballesteros F, Luque J and Nuno J C 2008 Proc. Natl. Acad. Sci. USA 105 4972
|
[29] |
Luque B, Lacasa L, Ballesteros F and Luque J 2009 Phys. Rev. E 80 046103
|
[30] |
Lacasa L and Toral R 2010 Phys. Rev. E 82 036120
|
[31] |
Luque B, Lacasa L, Ballesteros F J and Robledo A 2011 PLoS One 6 e22411
|
[32] |
Liu C, Zhou W X and Yuan W K 2010 Physica A 389 2675
|
[33] |
Dong Z and Li X 2010 Acta Phys. Sin. 59 1600 (in Chinese)
|
[34] |
Li P and Wang B H 2007 Physica A 378 519
|
[35] |
Shirazi A H, Jafari G R, Davoudi J, Peinke J, Tabar M R R and Sahimi M 2009 J. Stat. Mech. P07046
|
[36] |
Campanharo A S L O, Sirer M I, Malmgren R D, Ramos F M and Amaral L A N 2011 PLoS One 6 e23378
|
[37] |
Xu X, Zhang J and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601
|
[38] |
Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246
|
[39] |
Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 New J. Phys. 12 033025
|
[40] |
Gao Z K and Jin N D 2009 Chaos 19 033137
|
[41] |
Strorzzi F, Poljansek K, Bono F, Gutierrez E and Zaldivar J M 2011 Int. J. Bifurcat. Chaos 21 1047
|
[42] |
Donges J F, Heitzig J, Donner R V and Kurths J 2012 Phys. Rev. E 85 046105
|
[43] |
Xiang R, Zhang J, Xu X K and Small M 2012 Chaos 22 013107
|
[44] |
Zou Y, Donner R V, Wickramasinghe M, Kiss I Z, Small M and Kurths J 2012 Chaos 22 033130
|
[45] |
Shimada Y, Ikeguchi T and Shigehara T 2012 Phys. Rev. Lett. 109 158701
|
[46] |
Wang W X, Yang R, Lai Y C, Kovanis V and Grebogi C 2011 Phys. Rev. Lett. 106 154101
|
[47] |
Wang W X, Yang R, Lai Y C, Kovanis V and Harrison M A F 2011 Europhys. Lett. 94 48006
|
[48] |
Su R Q, Wang W X and Lai Y C 2012 Phys. Rev. E 85 065201
|
[49] |
Donges J F, Zou Y, Marwan N and Kurths J 2009 Europhys. Lett. 87 48007
|
[50] |
Zhou L, Gong Z Q, Zhi R and Feng G L 2009 Acta Phys. Sin. 58 7351 (in Chinese)
|
[51] |
Gong Z Q, Wang X J, Zhi R and Feng A X 2011 Chin. Phys. B 20 079201
|
[52] |
Song D M, Jiang Z Q and Zhou W X 2009 Physica A 388 2450
|
[53] |
Qian M C, Jiang Z Q and Zhou W X 2010 J. Phys. A: Math. Theor. 43 335002
|
[54] |
Zhang J, Zhang K, Feng J and Small M 2010 PLoS Comput. Biol. 6 e1001033
|
[55] |
Chavez M, Valencia M, Navarro V, Latora V and Martinerie J 2010 Phys. Rev. Lett. 104 118701
|
[56] |
Li X and Dong Z 2011 Phys. Rev. E 84 062901
|
[57] |
Hempel S, Koseska A, Kurths J and Nikoloski Z 2011 Phys. Rev. Lett. 107 054101
|
[58] |
Gao Z K, Jin N D, Wang W X and Lai Y C 2010 Phys. Rev. E 82 016210
|
[59] |
Gao Z K and Jin N D 2011 Chem. Eng. Sci. 66 2660
|
[60] |
Gao Z K, Jin N D, Yang D, Zhai L S and Du M 2012 Acta Phys. Sin. 61 120510 (in Chinese)
|
[61] |
Gao Z K and Jin N D 2012 Nonlinear Analysis-Real World Applications 13 947
|
[62] |
Walker D M and Tordesillas A 2012 Phys. Rev. E 85 011304
|
[63] |
Ghaffari H O and Young R P 2012 Europhys. Lett. 98 48003
|
[64] |
Yook S H, Jeong H, Barabasi A L and Tu Y 2001 Phys. Rev. Lett. 86 5835
|
[65] |
Zheng D F, Trimper S, Zheng B and Hui P M 2003 Phys. Rev. E 67 040102
|
[66] |
Kamada T and Kawai S 1989 Inform. Process. Lett. 31 7
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|