Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050507    DOI: 10.1088/1674-1056/22/5/050507
GENERAL Prev   Next  

Markov transition probability-based network from time series for characterizing experimental two-phase flow

Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德)
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
Abstract  We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitatively characterizing the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
Keywords:  complex network      time series analysis      chaotic dynamics      two-phase flow pattern  
Received:  20 October 2012      Revised:  14 November 2012      Accepted manuscript online: 
PACS:  05.45.Tp (Time series analysis)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China ( Grant Nos. 61104148, 41174109, and 50974095), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05020-006), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032120088).
Corresponding Authors:  Jin Ning-De     E-mail:  ndjin@tju.edu.cn

Cite this article: 

Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德) Markov transition probability-based network from time series for characterizing experimental two-phase flow 2013 Chin. Phys. B 22 050507

[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Wang W X, Wang B H, Hu B, Yan G and Ou Q 2005 Phys. Rev. Lett. 94 188702
[3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[4] Huang L, Park K, Lai Y C, Yang L and Yang K Q 2006 Phys. Rev. Lett. 97 164101
[5] Pan Z F, Li X and Wang X F 2006 Phys. Rev. E 73 056109
[6] Li X G, Gao Z Y, Li K P and Zhao X M 2007 Phys. Rev. E 76 016110
[7] Pei W D, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B 17 0373
[8] Zhou J, Lu J A and Lu J H 2008 Automatica 44 996
[9] Yu W, Cao J, Chen G, Lü J, Han J and Wei W 2009 IEEE Trans. Systems, Man, and Cybernetics-Part B 39 230
[10] Rong Z H, Wu Z X and Wang W X 2010 Phys. Rev. E 82 047101
[11] Duan Z S and Chen G R 2012 Chin. Phys. B 21 080506
[12] Lü L Y, Medo M, Ho Y C, Zhang Y C, Zhang Z K and Zhou T 2012 Physics Reports 519 1
[13] Zheng D F, Hui P M, Trimper S and Zheng B 2005 Physica A 352 659
[14] Jiang Z Q, Zhou W X, Xu B and Yuan W K 2007 AIChE Journal 53 423
[15] Zhang H F, Small M, Fu X C and Wang B H 2009 Chin. Phys. B 18 3639
[16] Guo J L 2010 Chin. Phys. B 19 120503
[17] Lu X B, Wang X F and Fang J Q 2010 Physica D 239 341
[18] Schneider C M, Moreira A A, Andrade Jr J S, Havlin S and Herrmann H J 2011 Proc. Natl. Acad. Sci. USA 108 3838
[19] Zhang C, Shen H Z, Li F and Yang H Q 2012 Acta Phys. Sin. 61 148902 (in Chinese)
[20] Wang D L, Yu Z G and Anh V 2012 Chin. Phys. B 21 080504
[21] Yao H X and Wang S G 2012 Chin. Phys. B 21 110506
[22] Sun W, Chen Z and Kang Y H 2012 Chin. Phys. B 21 010504
[23] Gao J X, Buldyrev S V, Stanley H E and Havlin S 2012 Nature Phys. 8 40
[24] Provata A and Beck C 2012 Phys. Rev. E 286 046101
[25] Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701
[26] Zhang J, Sun J, Luo X, Zhang K, Nakamura T and Small M 2008 Physica D 237 2856
[27] Yang Y and Yang H J 2008 Physica A 387 1381
[28] Lacasa L, Luque B, Ballesteros F, Luque J and Nuno J C 2008 Proc. Natl. Acad. Sci. USA 105 4972
[29] Luque B, Lacasa L, Ballesteros F and Luque J 2009 Phys. Rev. E 80 046103
[30] Lacasa L and Toral R 2010 Phys. Rev. E 82 036120
[31] Luque B, Lacasa L, Ballesteros F J and Robledo A 2011 PLoS One 6 e22411
[32] Liu C, Zhou W X and Yuan W K 2010 Physica A 389 2675
[33] Dong Z and Li X 2010 Acta Phys. Sin. 59 1600 (in Chinese)
[34] Li P and Wang B H 2007 Physica A 378 519
[35] Shirazi A H, Jafari G R, Davoudi J, Peinke J, Tabar M R R and Sahimi M 2009 J. Stat. Mech. P07046
[36] Campanharo A S L O, Sirer M I, Malmgren R D, Ramos F M and Amaral L A N 2011 PLoS One 6 e23378
[37] Xu X, Zhang J and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601
[38] Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246
[39] Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 New J. Phys. 12 033025
[40] Gao Z K and Jin N D 2009 Chaos 19 033137
[41] Strorzzi F, Poljansek K, Bono F, Gutierrez E and Zaldivar J M 2011 Int. J. Bifurcat. Chaos 21 1047
[42] Donges J F, Heitzig J, Donner R V and Kurths J 2012 Phys. Rev. E 85 046105
[43] Xiang R, Zhang J, Xu X K and Small M 2012 Chaos 22 013107
[44] Zou Y, Donner R V, Wickramasinghe M, Kiss I Z, Small M and Kurths J 2012 Chaos 22 033130
[45] Shimada Y, Ikeguchi T and Shigehara T 2012 Phys. Rev. Lett. 109 158701
[46] Wang W X, Yang R, Lai Y C, Kovanis V and Grebogi C 2011 Phys. Rev. Lett. 106 154101
[47] Wang W X, Yang R, Lai Y C, Kovanis V and Harrison M A F 2011 Europhys. Lett. 94 48006
[48] Su R Q, Wang W X and Lai Y C 2012 Phys. Rev. E 85 065201
[49] Donges J F, Zou Y, Marwan N and Kurths J 2009 Europhys. Lett. 87 48007
[50] Zhou L, Gong Z Q, Zhi R and Feng G L 2009 Acta Phys. Sin. 58 7351 (in Chinese)
[51] Gong Z Q, Wang X J, Zhi R and Feng A X 2011 Chin. Phys. B 20 079201
[52] Song D M, Jiang Z Q and Zhou W X 2009 Physica A 388 2450
[53] Qian M C, Jiang Z Q and Zhou W X 2010 J. Phys. A: Math. Theor. 43 335002
[54] Zhang J, Zhang K, Feng J and Small M 2010 PLoS Comput. Biol. 6 e1001033
[55] Chavez M, Valencia M, Navarro V, Latora V and Martinerie J 2010 Phys. Rev. Lett. 104 118701
[56] Li X and Dong Z 2011 Phys. Rev. E 84 062901
[57] Hempel S, Koseska A, Kurths J and Nikoloski Z 2011 Phys. Rev. Lett. 107 054101
[58] Gao Z K, Jin N D, Wang W X and Lai Y C 2010 Phys. Rev. E 82 016210
[59] Gao Z K and Jin N D 2011 Chem. Eng. Sci. 66 2660
[60] Gao Z K, Jin N D, Yang D, Zhai L S and Du M 2012 Acta Phys. Sin. 61 120510 (in Chinese)
[61] Gao Z K and Jin N D 2012 Nonlinear Analysis-Real World Applications 13 947
[62] Walker D M and Tordesillas A 2012 Phys. Rev. E 85 011304
[63] Ghaffari H O and Young R P 2012 Europhys. Lett. 98 48003
[64] Yook S H, Jeong H, Barabasi A L and Tu Y 2001 Phys. Rev. Lett. 86 5835
[65] Zheng D F, Trimper S, Zheng B and Hui P M 2003 Phys. Rev. E 67 040102
[66] Kamada T and Kawai S 1989 Inform. Process. Lett. 31 7
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[15] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
No Suggested Reading articles found!