Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050506    DOI: 10.1088/1674-1056/22/5/050506
GENERAL Prev   Next  

Complexity analyses of multi-wing chaotic systems

He Shao-Bo (贺少波), Sun Ke-Hui (孙克辉), Zhu Cong-Xu (朱从旭)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  The complexities of multi-wing chaotic systems based on the modified Chen system and multi-segment quadratic function are investigated by employing statistical complexity measure (SCM) and spectral entropy (SE) algorithm. How to choose the parameters of the SCM and SE algorithms is discussed. The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases, and it is consistent with the results of the Grassberger-Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system. This conclusion is verified by other multi-wing chaotic systems.
Keywords:  complexity      multi-wing chaotic system      statistical complexity measure (SCM)      spectral entropy (SE)  
Received:  30 August 2012      Revised:  15 October 2012      Accepted manuscript online: 
PACS:  05.45.Tp (Time series analysis)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61161006 and 61073187).
Corresponding Authors:  Sun Ke-Hui     E-mail:  kehui@csu.edu.cn

Cite this article: 

He Shao-Bo (贺少波), Sun Ke-Hui (孙克辉), Zhu Cong-Xu (朱从旭) Complexity analyses of multi-wing chaotic systems 2013 Chin. Phys. B 22 050506

[1] Wang X Y and Gao Y F 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 99
[2] Llling L 2009 Int. J. Nonlinear Anal. Theory Meth. Appl. 71 2958
[3] Zhang R X and Yang S P 2009 Chin. Phys. B 18 3295
[4] Niu Y J, Wang X Y, Nian F Z and Wang M J 2010 Chin. Phys. B 19 120507
[5] Lü J H, Murah K and Sinha S 2008 Phys. Lett. A 372 3234
[6] Yu S M, Tang K S and Lu J H 2008 IEEE Trans. Circ. Syst. 11 1168
[7] Carlos G and Roberto H 2010 Open Biomed. Eng. J. 4 223
[8] Christophe C J and Gregory K B 2011 Clin. Neurophysiol. 123 658
[9] Yu S M, Tang K S and Lü J H 2008 Int. J. Circ. Theory Appl. 38 243
[10] Yu S M, Tang K S and Lü J H 2008 IEEE Int. Symp. Circ. Syst. 32 768
[11] Kais B, Abdessattar C and Ahmed T 2011 Chaos Solition. Fract. 44 79
[12] Elwakil A S and Özoguz S A 2008 Int. J. Bifurcat. Chaos 18 841
[13] Giuseppe G, Frank L S and Damon A M 2009 Chaos Solition. Fract. 41 284
[14] Higuchi T 1988 Physica D 31 277
[15] Maragos P and Sun F K 1983 IEEE Trans. Signal Process. 41 108
[16] Grassberger P and Procaccia I 1983 Phys. Rev. Lett. 50 346
[17] Lempel A and Ziv J 1976 IEEE Trans. 22 75
[18] Bant C and Pompe B 2002 Phys. Rev. Lett. 88 1741
[19] Inoulye T, Shinosaki K and Sakamoto H 1991 Electroencephalogr. Clin. Neurophysiol. 79 204
[20] Pincus S M 1995 Chaos 5 110
[21] Richman J S and Moorman J R 2000 Am. J. Physiol. Heart Circ. Physiol. 278 2039
[22] Phillip P A, Chiu F L and Nick S J 2009 Phys. Rev. E 79 011915
[23] Zuino L, Zanin M and Tabak B M 2009 Physica A 388 2854
[24] López-Ruiz R, Mancini H L and Calbet X 1995 Phys. Lett. A 209 321
[25] Larrondo H A, González C M and Martin M T 2005 Physica A 356 133
[26] Chen W T, Zhuang J and Yu W X 2009 Med. Eng. Phys. 31 61
[27] Wolf A, Swift J and Swinney H 1985 Physica D 16 285
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[3] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[4] Controlled unknown quantum operations on hybrid systems
Yong He(何勇), Ming-Xing Luo(罗明星). Chin. Phys. B, 2016, 25(12): 120304.
[5] Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
Dou Fu-Xiang (窦富祥), Jin Ning-De (金宁德), Fan Chun-Ling (樊春玲), Gao Zhong-Ke (高忠科), Sun Bin (孙斌). Chin. Phys. B, 2014, 23(12): 120502.
[6] Correlation between detrended fluctuation analysis and the Lempel–Ziv complexity in nonlinear time series analysis
Tang You-Fu (唐友福), Liu Shu-Lin (刘树林), Jiang Rui-Hong (姜锐红), Liu Ying-Hui (刘颖慧). Chin. Phys. B, 2013, 22(3): 030504.
[7] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) . Chin. Phys. B, 2012, 21(2): 020304.
[8] Characteristics analysis of acupuncture electroencephalograph based on mutual information Lempel–Ziv complexity
Luo Xi-Liu(罗昔柳), Wang Jiang(王江), Han Chun-Xiao(韩春晓), Deng Bin(邓斌), Wei Xi-Le(魏熙乐), and Bian Hong-Rui(边洪瑞) . Chin. Phys. B, 2012, 21(2): 028701.
[9] A complexity measure approach based on forbidden patterns and correlation degree
Wang Fu-Lai(王福来). Chin. Phys. B, 2010, 19(6): 060515.
[10] An improvement on measure methods of the complexity theory and its applications
Wang Fu-Lai(王福来) and Yang Hui-Huang(杨辉煌). Chin. Phys. B, 2009, 18(9): 4042-4048.
[11] Fine-grained permutation entropy as a measure of natural complexity for time series
Liu Xiao-Feng(刘小峰) and Wang Yue(王越). Chin. Phys. B, 2009, 18(7): 2690-2695.
[12] Detecting dynamical complexity changes in time series using the base-scale entropy
Li Jin (李锦), Ning Xin-Bao (宁新宝), Wu Wei (吴巍), Ma Xiao-Fei (马小飞). Chin. Phys. B, 2005, 14(12): 2428-2432.
No Suggested Reading articles found!