Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 044201    DOI: 10.1088/1674-1056/22/4/044201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wide-angle and broadband graded-refractive-index antireflection coatings

Zhang Jun-Chao (张俊超)a b, Xiong Li-Min (熊利民)a, Fang Ming (方明)b, He Hong-Bo (贺洪波)b
a Optic and Laser Division, National Institute of Metrology, Beijing 100013, China;
b Key Laboratory of Material Science and Technology for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  Design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a genetic algorithm is used in the design of GRIN AR coatings. The average reflectance over the wavelength range from 400 nm to 800 nm and angles of incidence from 0° to 80° could be reduced to only 0.1% by applying an optimized AR coating onto BK7 glass. The optimization of step-graded GRIN AR coating is further investigated in detail. A two-layer AR coating was deposited by electron beam evaporation with glancing angle deposition technology. The positional homogeneity was improved by depositing the film from two opposite directions. The microstructure of the AR coating was investigated by scanning electron microscopy. Residual reflectances of the coating sample are in agreement with theoretical calculations. The optimized GRIN AR coatings are beneficial to increase the efficiency of light utilization.
Keywords:  antireflection      wide-angle      broadband      refractive-index profile  
Received:  21 July 2012      Revised:  09 September 2012      Accepted manuscript online: 
PACS:  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  42.79.Ry (Gradient-index (GRIN) devices)  
  42.79.Wc (Optical coatings)  
Corresponding Authors:  Zhang Jun-Chao     E-mail:  zhangjunchao4568@163.com

Cite this article: 

Zhang Jun-Chao (张俊超), Xiong Li-Min (熊利民), Fang Ming (方明), He Hong-Bo (贺洪波) Wide-angle and broadband graded-refractive-index antireflection coatings 2013 Chin. Phys. B 22 044201

[1] Diedenhofen S L, Vecchi G, Algra R E, Hartsuiker A, Muskens O L, Immink G, Bakkers E P A M, Vos W L and Rivas J G 2009 Adv. Mater. 21 973
[2] Southwell W H 1985 Appl. Opt. 24 457
[3] Kong W J, Shen Z C, Wang S H, Shao J D, Fan Z X and Lu C J 2010 Chin. Phys. B 19 044210
[4] Zhang J C, Fang M, Jin Y X and He H B 2012 Chin. Phys. B 21 014202
[5] Southwell W H 1983 Opt. Lett. 8 584
[6] Fu X Y, Wang S M, Deng D G, Yi K, Shao J D and Fan Z X 2005 Chin. Phys. Lett. 22 3173
[7] Spiller E, Haller I, Feder R, Baglin J E E and Hammer W N 1980 Appl. Opt. 19 3022
[8] Fahr S, Ulbrich C, Kirchartz T, Rau U, Rockstuhl C and Lederer F 2008 Opt. Express 16 9332
[9] Mahdjoub A and Zighed L 2005 Thin Solid Films 478 299
[10] Kuo M L, Poxson D J, Kim Y S, Mont F W, Kim J K, Schubert E F and Lin S Y 2008 Opt. Lett. 33 2527
[11] Chhajed S, Schubert M F, Kim J K and Schubert E F 2008 Appl. Phys. Lett. 93 251108
[12] Lee C C, Tang C J and Wu J Y 2006 Appl. Opt. 45 1333
[13] Bartzsch H, Lange S, Frach P and Goedicke K 2004 Surf. Coat. Technol. 180 616
[14] Xiao X D, Dong G P, Xu C, He H B, Qi H J, Fan Z X and Shao J D 2008 Appl. Surf. Sci. 255 2192
[15] Popta A C, Hawkeye M M, Sit J C and Brett M J 2004 Opt. Lett. 29 2545
[16] Xi J Q, Schubert M F, Kim J K, Schubert E F, Chen M, Lin S Y, Liu W and Smart J A 2007 Nat. Photonics 1 176
[17] Greiner H 1996 Appl. Opt. 35 5477
[18] Yang J M and Kao C Y 2001 J. Lightwave Technol. 19 559
[19] Martin S, Rivory J and Schoenauer M 1995 Appl. Opt. 34 2247
[20] Schubert M F, Mont F W, Chhajed S, Poxson D J, Kim J K and Schubert E F 2008 Opt. Express 16 5290
[21] Schubert E F, Kim J K and Xi J Q 2007 Phys. Status Solidi B 244 3002
[22] Motohiro T and Taga Y1989 Appl. Opt. 28 2466
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[5] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[6] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[7] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[8] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[9] Broadband topological valley-projected edge-states transport in composite structure phononic crystal
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2021, 30(8): 084302.
[10] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[11] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
[12] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[13] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[14] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[15] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
No Suggested Reading articles found!