Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 044202    DOI: 10.1088/1674-1056/22/4/044202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental research on the longitudinal field generated by a tightly focused beam

Zhang Ming-Qian (张明倩), Wang Jia (王佳), Tian Qian (田芊)
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  The longitudinal optical field is a peculiar physical phenomenon which is always involved with the domain of near-field optics. Due to its extraordinary properties, recently, it attracts increasing attention in research and application. In this work, the longitudinal fields generated by the evanescent illumination of tightly focused different polarized hollow beams are investigated. The focused light fields are numerically simulated according to the vector diffraction theory and their vector analysis is also carried out. And the longitudinal fields on the focal plane are demonstrated experimentally using a tip-enhanced scanning near-field microscopy. The simulation and experimental results show that the tightly focused radially polarized beam is suited to generate a stronger and purer longitudinal optical field at the focus.
Keywords:  longitudinal optical field      high numerical aperture      focusing beam      polarization  
Received:  25 April 2012      Revised:  19 September 2012      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  42.25.Fx (Diffraction and scattering)  
  07.79.Fc (Near-field scanning optical microscopes)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177089 and 61227014) and the National Basic Research Program of China (Grant No. 2007CB936801).
Corresponding Authors:  Zhang Ming-Qian     E-mail:  zhangmq08@mails.tsinghua.edu.cn

Cite this article: 

Zhang Ming-Qian (张明倩), Wang Jia (王佳), Tian Qian (田芊) Experimental research on the longitudinal field generated by a tightly focused beam 2013 Chin. Phys. B 22 044202

[1] Lax M, Louisell W H and Knight W B 1975 Phys. Rev. A 11 1365
[2] Cicchitelli L, Hora H and Postle R 1990 Phys. Rev. A 41 3727
[3] Wang H, Shi L, Lukyanchuk B, Sheppard C and Chong C T 2008 Nat. Photon. 2 501
[4] Stamnes J J 1986 Wave in Focal Region (Bristol: Adam Hilger) Chap. 16
[5] Chen J N, Xu Q F and Wang G 2011Chin. Phys. B 20 114211
[6] Youngworth K S and Brown T G 2000 Opt. Express 7 77
[7] Zhan Q 2004 Opt. Express 12 3377
[8] Huse N, Schonle A and Hell S W 2011 J. Biomed. Opt. 6 480
[9] Rosenzweig J, Murokh A and Pellegrini C 1995 Phys. Rev. Lett. 74 2467
[10] Liu J L, Sheng Z M and Zheng J 2012 Chin. Phys. B 21 024101
[11] Kawata S 2001 Near-Field Optics and Surface Plasmon Polaritons (Berlin: Springer)
[12] Novotny L, Bian R X and Xie X S 1997 Phys. Rev. Lett. 79 645
[13] Hartschuh A 2008 Angew. Chemie. 47 8178
[14] Steidtner J and Pettinger B 2007 Rev. Sci. Inst. 78 103104
[15] Hayazawa N, Saito Y and Kawata S 2004 Appl. Phys. Lett. 65 6239
[16] Wolf E 1959 Proc. R. Soc. Lond. A 253 349
[17] Richards B and Wolf E 1959 Proc. R. Soc. Lond. A 253 358
[18] Yamaguchi R, Nose T and Sato S 1989 Jpn. J. Appl. Phys. 28 1730
[19] Kim D S, Heo J, Ahn S H, Han S W, Yun W S and Kim Z H 2009 Nano Lett. 9 3619
[20] Zhan Q 2009 Adv. Opt. Photon. 1 1
[21] He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826
[22] Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E and Dholakia K 2001 Science 292 912
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
No Suggested Reading articles found!