Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 037102    DOI: 10.1088/1674-1056/22/3/037102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferromagnetism in ZnO with (Mn,Li) codoping

Ma Shi-Jia (马世甲), Lu Peng-Fei (芦鹏飞), Yu Zhong-Yuan (俞重远), Zhao Long (赵龙), Li Qiong-Yao (李琼瑶), Wu Cheng-Jie (武成洁), Ding Lu (丁路)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  First-principles calculations were performed to investigate the magnetic properties of Zn(Mn,Li)O based on the Perdew–Burke–Ernzerhof form of generalized gradient approximation. Antiferromagnetic (AFM) ordering is the ground state in Mn-doped ZnO system without the codopant of Li, while seven different geometrical configurations of Zn(Mn,Li)O prefer stable ferromagnetic (FM) ordering. We found that dopant Li can effectively change the magnetic coupling in the ZnMnO system. The Curie temperature (TC) of FM ordering depends on the geometric configuration, and the highest TC is about 1388 K. The FM stabilization is greatly affected by Mn–Mn distance rather than by the position of dopant Li. We propose that dopant Li mediates FM coupling through a double exchange interaction or an RKKY interaction when Li is located, respectively, near or far from Mn ions.
Keywords:  density functional theory      ferromagnetism      Curie temperature  
Received:  19 April 2012      Revised:  11 September 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61102024), the Fundamental Research Funds for the Central Universities of China (Grant No. 2012RC0401), and BUPT Excellent Ph.D. Students Foundation, China (Grant No. CX201114).
Corresponding Authors:  Lu Peng-Fei     E-mail:  photon.bupt@gmail.com

Cite this article: 

Ma Shi-Jia (马世甲), Lu Peng-Fei (芦鹏飞), Yu Zhong-Yuan (俞重远), Zhao Long (赵龙), Li Qiong-Yao (李琼瑶), Wu Cheng-Jie (武成洁), Ding Lu (丁路) Ferromagnetism in ZnO with (Mn,Li) codoping 2013 Chin. Phys. B 22 037102

[1] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[2] Wang Q, Sun Q, Jena P and Kawazoe Y 2009 Phys. Rev. B 79 115407
[3] Gopal P and Spaldin N A 2006 Phys. Rev. B 74 094418
[4] Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju A R, Rout C and Waghmare U V 2005 Phys. Rev. Lett. 94 187204
[5] Zhao L, Lu P F, Yu Z Y, Liu Y M, Wang D L and Ye H 2010 Chin. Phys. B 19 056104
[6] Liu X C, Chen Z Z, Shi E W, Liao D Q and Zhou K J 2011 Chin. Phys. B 20 037501
[7] Xu X G, Yang H L, Wu Y, Zhang D L and Jiang Y 2012 Chin. Phys. B 21 047504
[8] Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201
[9] Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2009 Physica A 388 3433
[10] Iusan D, Sanyal B and Eriksson O 2006 Phys. Rev. B 74 235208
[11] Mandal S K, Das A K, Nath T K, Karmakar D and Satpati B 2006 J. Appl. Phys. 100 104315
[12] Jayakumar O D, Gopalakrishnan I K and Kulshrestha S K 2006 Physica B 381 194
[13] Jung S W, An S J, Yi G C, Jung C U, Lee S and Cho S 2002 Appl. Phys. Lett. 80 4561
[14] Lawes G, Risbud A S, Ramirez A P and Seshadri R 2005 Phys. Rev. B 71 045201
[15] Zhu Y, Cao J X, Yang Z Q and Wu R Q 2009 Phys. Rev. B 79 085206
[16] Zhao L, Lu P F, Yu Z Y, Guo X T, Shen Y, Ye H, Yuan G F and Zhang L 2010 J. Appl. Phys. 108 113924
[17] Lin X L, Yan S S, Zhao M W, Hu S J, Yao X X, Han C, Chen Y X, Liu G L, Dai Y Y and Mei L M 2010 J. Appl. Phys. 107 033903
[18] Yadav M K, Sanyal B and Mookerjee A 2009 J. Magn. Magn. Mater. 321 273
[19] Wang Q, Sun Q, Jena P and Kawazoe Y 2004 Phys. Rev. B 70 052408
[20] Liu X C, Shi E W, Chen Z Z, Zhang H W, Xiao B and Song L X 2006 Appl. Phys. Lett. 88 252503
[21] Xu X H, Blythe H J, Ziese M, Behan A J, Neal J R, Mokhtari A, Ibrahim R M, Fox A M and Gehring G A 2006 New J. Phys. 8 135
[22] Zeng Y J, Ye Z Z, Lu J G, Xu W Z, Zhu L P, Zhao B H and Limpijumnong S 2006 Appl. Phys. Lett. 89 042106
[23] Yi J B, Lim C C, Xing G Z, Fan H M, Van L H, Huang S L, Yang K S, Huang X L, Qin X B, Wang B Y, Wu T, Wang L, Zhang H T, Gao X Y, Liu T, Wee A T S, Feng Y P and Ding J 2010 Phys. Rev. Lett. 104 137201
[24] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Condens. Mat. 14 2717
[25] Pei G Q, Xia C T, Wu B, Wang T, Zhang L L, Dong Y J and Xu J 2008 Comput. Mater. Sci. 43 489
[26] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[27] Dietl T, Haury A and Merle d'Aubigné Y 1997 Phys. Rev. B 55 R3347
[28] Mahadevan P, Zunger A and Sarma D D 2004 Phys. Rev. Lett. 93 177201
[29] Yamamoto T and Katayama-Yoshida H 2001 Physica B 302 155
[30] Zhang T, Song L X, Chen Z Z, Shi E W, Chao L X and Zhang H W 2006 Appl. Phys. Lett. 89 172502
[31] Liao L, Li J C, Wang D F, Liu C, Peng M Z and Zhou J M 2006 Nanotechnology 17 830
[32] Sato K, Schweika W, Dederichs P H and Yoshida H K 2004 Phys. Rev. B 70 201202
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!