Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 028702    DOI: 10.1088/1674-1056/22/2/028702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modulation of brain functional connectivity with manual acupuncture in healthy subjects: An electroencephalograph case studying

Yi Guo-Sheng (伊国胜)a, Wang Jiang (王江)a, Han Chun-Xiao (韩春晓)b, Deng Bin (邓斌)a, Wei Xi-Le (魏熙乐)a, Li Nuo (李诺)a
a School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072, China;
b Tianjin Key Laboratory of Information Sensing & Intelligent Control, Tianjin University of Technology and Education, Tianjin 300222, China
Abstract  Manual acupuncture is widely used for pain treatment and stress control. Previous studies on acupuncture have shown its modulatory effects on functional connectivity associated with one or a few preselected brain regions. To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level, we acupuncture at ST36 of right leg to obtain electroencephalograph (EEG) signals. By coherence estimation, we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states. The resulting synchronization matrices are converted into functional networks by applying a threshold, and clustering coefficients and path lengths are computed as a function of threshold. The results show that acupuncture can increase functional connections and synchronizations between different brain areas. For a wide range of threshold, the clustering coefficient during acupuncture and post-acupuncture period is higher than that during the pre-acupuncture control period, whereas characteristic path length is shorter. We provide further support for the presence of "small-world" network characteristics in functional networks by acupuncture. These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture, which could contribute to the understanding of acupuncture effects on the entire brain, as well as the neurophysiological mechanisms underlying acupuncture. Moreover, the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.
Keywords:  manual acupuncture      electroencephalograph      synchronization      functional connectivity  
Received:  09 July 2012      Revised:  23 August 2012      Accepted manuscript online: 
PACS:  87.19.le (EEG and MEG)  
  87.85.Pq (Biomedical imaging)  
  07.05.Pj (Image processing)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50537030); the National Natural Science Foundation of China (Grant Nos. 61072012 and 61172009); the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61104032 and 60901035); and the Tianjin Municipal Natural Science Foundation, China (Grant No. 12JCZDJC21100).
Corresponding Authors:  Wang Jiang     E-mail:  jiangwang@tju.edu.cn

Cite this article: 

Yi Guo-Sheng (伊国胜), Wang Jiang (王江), Han Chun-Xiao (韩春晓), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Li Nuo (李诺) Modulation of brain functional connectivity with manual acupuncture in healthy subjects: An electroencephalograph case studying 2013 Chin. Phys. B 22 028702

[1] NIH consensus conference 1998 J. Am. Med. Assoc. 280 1518
[2] Han C X, Wang J, Che Y Q, Deng B, Guo Y, Guo Y M and Liu Y Y 2010 Acta Phys. Sin. 59 5880 (in Chinese)
[3] Dhond R P, Yeh C, Park K, Kettner N and Napadow V 2008 Pain 136 407
[4] Bai L J, Qin W, Tian J, Dai J P and Yang W H 2009 Prog. Nat. Sci. 19 827
[5] Bai L, Qin W, Tian J, Dong M, Pan X, Chen P, Dai J, Yang W and Liu Y 2009 Brain Res. 1279 37
[6] Ren Y, Bai L, Feng Y, Tian J and Li K 2010 Neurosci. Lett. 482 95
[7] Qin W, Tian J, Bai L, Pan X, Yang L, Chen P, Dai J, Ai L, Zhao B, Gong Q, Wang W, von Deneen K M and Liu Y 2008 Mol. Pain 4 55
[8] Bian H R, Wang J, Han C X, Deng B, Wei X L and Che Y Q 2011 Acta Phys. Sin. 60 118701 (in Chinese)
[9] Luo X L, Wang J, Han C X, Deng B, Wei X L and Bian H R 2012 Chin. Phys. B 21 028701
[10] Feng Y, Bai L, Ren Y, Wang H, Liu Z, Zhang W and Tian J 2011 Magnetic Resonance Imaging 29 958
[11] Stam C J, Jones B F, Nolte G, Breakspear M and Scheltens P 2007 Cerebral Cortex 17 92
[12] Li L, Jin Z L and Li B 2011 Chin. Phys. B 20 038701
[13] Micheloyannis S, Pachou E, Stam C J, Breakspear M, Bitsios P, Vourkas M, Erimaki S and Zervakis M 2006 Schizophr. Res. 87 60
[14] Fang X L and Jiang Z L 2007 Acta Phys. Sin. 56 7330 (in Chinese)
[15] Bai L, Qin W, Tian J, Liu P, Li L, Chen P, Dai J, Craggs J G, von Deneen K M and Liu Y 2009 Hum. Brain Mapping 30 3445
[16] Bai L, Tian J, Zhong C, Xue T, You Y, Liu Z, Chen P, Gong Q, Ai L, Qin W, Dai J and Liu Y 2010 Mol. Pain 6 73
[17] Gevins A 1998 Electroencephalography and Clinical Neurophysiology 106 165
[18] Nunez P L, Srinivasan R, Westdorp A F, Wijesinghe R S, Tucker D M, Silberstein R B and Cadusch P J 1997 Electroencephalogr. Clin. Neurophysiol. 103 499
[19] Strogatz S H 2001 Nature 410 268
[20] Eguiluz V M, Chialvo D R, Cecchi G A, Baliki M and Apkarian A V 2005 Phys. Rev. Lett. 94 018102
[21] Sporns O and Zwi J D 2004 Neuroinformatics 2 145
[22] Watts D J and Strogatz S H 1998 Nature 393 440
[23] Stam C J 2004 Neurosci. Lett. 355 25
[24] Han J S 2004 Neurosci. Lett. 361 258
[25] Quiroga R Q, Kraskov A, Kreuz T and Grassberger P 2002 Phys. Rev. E 65 041903
[26] Newman M E J 2003 SIAM Rev. 45 167
[27] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and Alon U 2002 Science 298 824
[28] Pereda E, Quiroga R Q and Bhattacharya J 2005 Progress in Neurobiology 77 1
[29] Friston K 2002 Ann. Rev. Neurosci. 25 221
[30] Ponten S C, Bartolomei F and Stam C J 2007 Clinical Neurophysiology 118 918
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[14] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!