Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 024208    DOI: 10.1088/1674-1056/22/2/024208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Impacts of operational parameters on nonlinear polarization rotation-based passively mode-locked fiber laser

Feng Li-Hui (冯立辉), Zuo Lin (左林), Yang Ai-Ying (杨爱英)
School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
Abstract  The operational parameters including the polarization controlling and the pump power in a nonlinear polarization rotation based passively mode-locked fiber laser are studied in this paper. The carrier rate equations of the activated erbium-doped fiber are first employed together with the nonlinear Shrödinger equations to reveal the relation between the operational parameters and the output state of the passively mode-locked fiber laser. The numerical and experimental results demonstrate that the output state of the mode-locked laser varies with the polarization controlling and the pump power. The periodicity of the polarization controlling is observed. With given pump power, there exists a set of polarization controlling under which the ultra-short pulse can be generated. With given polarization controlling, the mode-locked state can be maintained generally except for some particular values of pump power. Three shapes of the output optical spectra from the fiber cavity can be identified when the pump power changes. The results in this paper provide a comprehensive insight into the operation of the nonlinear polarization rotation-based passively mode-locked fiber laser.
Keywords:  optical communication      nonlinear optics      mode-locked fiber laser  
Received:  15 July 2012      Revised:  16 October 2012      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.55.Wd (Fiber lasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60972017, 60978007, and 61177067).
Corresponding Authors:  Feng Li-Hui     E-mail:  lihui.feng@bit.edu.cn

Cite this article: 

Feng Li-Hui (冯立辉), Zuo Lin (左林), Yang Ai-Ying (杨爱英) Impacts of operational parameters on nonlinear polarization rotation-based passively mode-locked fiber laser 2013 Chin. Phys. B 22 024208

[1] Chen L R and Cartledge J C 2008 J. Lightwave Technol. 26 799
[2] Jiang M, Ahn K H, Cao X D, Dasika P, Liang Y, Islam M N, Evans A F, Hawk R M, Nolan D A and Weidman D L 1997 J. Lightwave Technol. 15 2020
[3] Whitenett G, Stewart G, Yu H B and Culshaw B 2004 J. Lightwave Technol. 22 813
[4] Herda R, Okhotnikov O G, Rafailov E U, Sibbett W, Crittenden P and Starodumov A 2006 Photon. Technol. Lett. 18 157
[5] Zhang Z X, Ye Z Q, Sang M H and Nie Y Y 2008 Laser Phys. Lett. 5 364
[6] Mohamed A A, Yury L, Diaa A K and Hanan A 2009 Opt. Express 17 2264
[7] Tang D Y, Man M S and Tam M Y 1999 Opt. Commun. 165 189
[8] Martel G, Chédot C, Hideur A and Grelu P 2008 Fiber Integr. Opt. 27 320
[9] Ruehl A, Wandt D, Morgner U and Kracht D 2009 Quantum Electron. 15 170
[10] Zhang H, Tang D Y, Zhao L M, Wu X and Tan H 2009 Opt. Express 17 455
[11] Qu Z S, Wang Y G and Liu J 2012 Chin. Phys. B 21 064211
[12] Liu J R, Xu W C and Luo Z C 2011 Chin. Phys. B 20 054203
[13] Haboucha A, Komarov A, Leblond H, Sanchez F and Martel G 2008 Opt. Fiber Technol. 14 262
[14] Abdelalim M A, Logvin Y, Khalil D A and Anis H 2009 Opt. Express 17 13128
[15] Luo Z C, Xu W C, Song C X, Luo A P and Chen W C 2009 Chin. Phys. B 18 2328
[16] Cao W J, Xu W C, Luo Z C, Wang L Y, Wang H Y, Dong J L and Luo A P 2011 Chin. Phys. B 20 114209
[17] Herman A H 2000 Quantum Electron. 6 1173
[18] Andrey K, Hervé L and Franois S 2005 Phys. Rev. A 71 053809
[19] Lei T, Tu C H, Lu F Y, Deng Y X and Li E B 2009 Opt. Express 17 585
[20] Giles C R and Desurvire E 1991 Lightwave Technol. 9 271
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[6] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[7] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[8] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[9] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[10] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[11] Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence
Hao Wang(王昊), Fu-Zeng Kang(康福增), Xuan Wang(王瑄), Wei Zhao(赵卫), and Shu-Wei Sun(孙枢为). Chin. Phys. B, 2021, 30(6): 064207.
[12] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[13] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[14] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[15] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
No Suggested Reading articles found!