Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 024207    DOI: 10.1088/1674-1056/22/2/024207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimization of polarization spectroscopy for rubidium D lines

Sun Jian-Fang (孙剑芳), Yin Shi-Qi (尹士奇), Xu Zhen (徐震), Hong Tao (洪涛), Wang Yu-Zhu (王育竹)
Key Laboratory for Quantum Optics, Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  Polarization spectroscopy of the D lines of rubidium atoms is investigated experimentally, especially with different pump powers and cell temperatures. We found that there are four candidate transitions suitable for frequency stabilization, and optimal pump powers and cell temperatures are also presented to obtain a perfect signal with maximal amplitude and slope. The optimal signal is insensitive to the fluctuations of laser power and the temperature, which can enhance the performance of frequency locking.
Keywords:  polarization spectroscopy      pump power      temperature  
Received:  20 July 2012      Revised:  27 August 2012      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  32.80.Xx (Level crossing and optical pumping)  
  51.70.+f (Optical and dielectric properties)  
Fund: Project supported by the Research Project of Shanghai Science and Technology Commission (Grant No. 09DJ1400700); the National 973 Program of China (Grant No. 2011CB921504); and the National Natural Science Foundation of China (Grant No. 10974211).
Corresponding Authors:  Xu Zhen, Wang Yu-Zhu     E-mail:  xuzhen@siom.ac.cn; yzwang@mail.shcnc.ac.cn

Cite this article: 

Sun Jian-Fang (孙剑芳), Yin Shi-Qi (尹士奇), Xu Zhen (徐震), Hong Tao (洪涛), Wang Yu-Zhu (王育竹) Optimization of polarization spectroscopy for rubidium D lines 2013 Chin. Phys. B 22 024207

[1] Chu S 1998 Rev. Mod. Phys. 70 685
[2] Phillips W D 1998 Rev. Mod. Phys. 70 721
[3] Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707
[4] Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2003 J. Low Temp. Phys. 132 309
[5] Petersen M, Chicireanu R, Dawkins S T, Magalhaes D V, Mandache C, Le Coq Y, Clairon A and Bize S 2008 Phys. Rev. Lett. 101 183004
[6] Poli N, Tarallo M G, Schioppo M, Oates C W and Tino G M 2009 Appl. Phys. B 97 27
[7] Tiwari V B, Singh S, Mishra S R, Rawat H S and Mehendale S C 2006 Opt. Commun. 263 249
[8] Millett-Sikking A, Hughes I G, Tierney P and Cornish S L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 187
[9] Reeves J M, Garcia O and Sackett C A 2006 Appl. Opt. 45 372
[10] Harris M L, Cornish S L, Tripathi A and Hughes I G 2008 J. Phys. B: At. Mol. Opt. Phys. 41 085401
[11] Wieman C and Hänsch T W 1976 Phys. Rev. Lett. 36 1170
[12] Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E and Hughes I G 2006 Phys. Rev. A 73 062509
[13] Do H D, Moon G and Noh H R 2008 Phys. Rev. A 77 032513
[14] Kulatunga P, Busch H C, Andrews L R and Sukenik C I 2012 Opt. Commun. 285 2851
[15] Carr C, Adams C S and Weatherill K J 2012 Opt. Lett. 37 118
[16] Corwin K L, Lu Z T, Hand C F, Epstein R J and Wieman C E 1998 J. Opt. Soc. Am. A 37 3295
[17] Millett-Sikking A, Hughes I G, Tierney P and Cornish S L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 187
[18] Griffin P F 2005 Ph. D. Thesis "Laser Cooling and Loading of Rb into a Large Period, Quasi-Electrostatic, Optical Lattice", Durham University
[19] Kim J B, Kong H J and Lee S S 1988 Appl. Phys. Lett. 52 417
[20] Javaux C, Hughes I G, Lochead G, Millen J and Jones M P A 2010 Eur. Phys. J. D 57 151
[21] Yoshikawa Y, Umeki T, Mukae T, Torii Y and Kuga T 2003 J. Opt. Soc. Am. A 42 6645
[22] Demtröder W 2008 Laser Spectroscopy (Berlin/Heidelberg: Springer-Verlag)
[23] Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A and Hughes I G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5141
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[3] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[4] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[8] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[11] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[12] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[13] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[14] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[15] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
No Suggested Reading articles found!