ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration |
Wang Feng-Chao (王凤超) |
School of Science, Shanghai Institute of Technology, Shanghai 201418, China |
|
|
Abstract The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent experiments (D. Haberberger et al., 2012 Nat. Phys. 8 95) is attributed to the use of exponentially decaying density profile of the plasma target. It does not only keep the shock velocity stable but also suppresses the normal target normal sheath acceleration. The effects of target composition are also examined, where a similar collective velocity of all ion species is demonstrated. The results also give some reference to future experiments of producing energetic heavy ions.
|
Received: 19 April 2013
Revised: 17 June 2013
Accepted manuscript online:
|
PACS:
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
Fund: Project supported by the Shanghai Natural Special Foundation for Outstanding Young Teachers in University, China (Grant No. yyy10043). |
Corresponding Authors:
Wang Feng-Chao
E-mail: fcwang@sit.edu.cn
|
Cite this article:
Wang Feng-Chao (王凤超) Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration 2013 Chin. Phys. B 22 124102
|
[1] |
Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D and Powell H 2001 Phys. Rev. Lett. 86 436
|
[2] |
Malekynia B and Razavipour S S 2013 Chin. Phys. B 22 055202
|
[3] |
Malekynia B and Razavipour S S 2012 Chin. Phys. B 21 125201
|
[4] |
Pukhov A 2001 Phys. Rev. Lett. 86 3562
|
[5] |
Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A and Snavely R A 2001 Phys. Plasmas 8 542
|
[6] |
Snavely R A, Key M H, Hatchett S P, Gautier D C, Flippo K A, Letzring S, Johnson R P, Shimada T, Yin L, Albright B J, Bowers K J, Fernández J C, Rykovanov S G, Wu H C, Zepf M, Jung D, Liechtenstein V Kh, Schreiber J, Habs D and Hegelich B M 2000 Phys. Rev. Lett. 85 2945
|
[7] |
Mora P 2003 Phys. Rev. Lett. 90 185002
|
[8] |
Esirkepov T Zh, Bulanov S V, Nishihara K, Tajima T, Pegoraro F, Khoroshkov V S, Mima K, Daido H, Kato Y, Kitagawa Y, Nagai K and Sakabe S 2002 Phys. Rev. Lett. 89 175003
|
[9] |
Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D and Esirkepov T 2006 Nature 439 445
|
[10] |
Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K and Fernández J C 2006 Nature 439 441
|
[11] |
Gaillard S A, Kluge T, Flippo K A, Bussmann M, Gall B, Lockard T, Geissel M, Offermann D T, Schollmeier M, Sentoku Y and Cowan T E 2011 Phys. Plasmas 18 056710
|
[12] |
Macchi A, Cattani F, Liseykina T V and Cornolti F 2005 Phys. Rev. Lett. 94 165003
|
[13] |
Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z and Kawata S 2011 Chin. Phys. Lett. 29 035202
|
[14] |
Shen B F and Xu Z Z 2001 Phys. Rev. E 64 056406
|
[15] |
Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Phys. Rev. Lett. 92 175003
|
[16] |
Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X and Chen J E 2008 Phys. Rev. Lett. 100 135003
|
[17] |
Qiao B, Zepf M, Borghesi M and Geissler M 2009 Phys. Rev. Lett. 102 145002
|
[18] |
Pegoraro F and Bulanov S V 2007 Phys. Rev. Lett. 99 065002
|
[19] |
Zhang X M, Shen B F, Li X M, Jin Z Y and Wang F C 2007 Phys. Plasmas 14 073101
|
[20] |
Robinson A P L, Zepf M, Kar S, Evans R G and Bellei C 2008 New J. Phys. 10 013021
|
[21] |
Klimo O, Psikal J, Limpouch J and Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301
|
[22] |
Henig A, Kiefer D, Markey K, Gautier D C, Flippo K A, Letzring S, Johnson R P, Shimada T, Yin L, Albright B J, Bowers K J, Fernández J C, Rykovanov S G, Wu H C, Zepf M, Jung D, Liechtenstein V Kh, Schreiber J, Habs D and Hegelich B M 2009 Phys. Rev. Lett. 103 045002
|
[23] |
Chen M, Pukhov A and Yu T P 2009 Phys. Rev. Lett. 103 024801
|
[24] |
Yu T, Pukhov A, Shvets G and Chen M 2010 Phys. Rev. Lett. 105 065002
|
[25] |
Shen B F, Zhang X M, Sheng Z M, Yu M Y and Cary J 2009 Phys. Rev. ST Accel. Beams 12 121301
|
[26] |
Yu L L, Xu H, Wang W M, Sheng Z M, Shen B F, Yu W and Zhang J 2010 New J. Phys. 12 045021
|
[27] |
Zhang X M, Shen B F, Ji L L, Wang F C, Wen M, Wang W P, Xu J C and Yu Y H 2010 Phys. Plasmas 17 123102
|
[28] |
Zheng F L, Wang H Y, Yan X Q, Tajima T, Yu M Y and He X T 2012 Phys. Plasmas 19 023111
|
[29] |
Denavit J 1992 Phys. Rev. Lett. 69 3052
|
[30] |
Palmer C A J, Dover N P, Pogorelsky I, Babzien M, Dudnikova G I, Ispiriyan M, Polyanskiy M N, Schreiber J, Shkolnikov P, Yakimenko V and Najmudin Z 2011 Phys. Rev. Lett. 106 014801
|
[31] |
Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B and Joshi C 2012 Nat. Phys. 8 95
|
[32] |
Fiuza F, Stockem A, Boella E, Fonseca R A, Silva L O, Haberberger D, Tochitsky S, Gong C, Mori W B and Joshi C 2012 Phys. Rev. Lett. 109 215001
|
[33] |
Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S and Mori W B 2004 Phys. Rev. Lett. 92 015002
|
[34] |
Forslund D W and Shonk C R 1970 Phys. Rev. Lett. 25 1699
|
[35] |
Forslund D W and Freidberg J P 1971 Phys. Rev. Lett. 27 1189
|
[36] |
Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbrück K, Mackinnon A J, Patel P, Pretzler G, Toncian T and Willi O 2008 Phys. Rev. Lett. 101 025004
|
[37] |
Nieter C and Cary J R 2004 J. Comp. Phys. 196 448
|
[38] |
Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Li X M, Wen M and Cary J R 2008 Phys. Rev. Lett. 101 164802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|