Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 086201    DOI: 10.1088/1674-1056/ab928a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Experimental investigation on the properties of liquid film breakup induced by shock waves

Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰)
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  We experimentally observed properties of liquid film breakup for shock-wave-initiated disturbances in air at normal temperature and pressure. The tested liquids include water and various glycerol mixtures. High speed camera and multiple-spark high speed camera were utilized to record the process of liquid film breakup. A phase Doppler particle analyzer was also used to record droplet size and velocity. The experimental results show that liquid viscosity plays a vital role in the deformation, breakup and atomization of liquid films. After the interaction of shock waves, the droplet size of various glycerol mixtures is significantly smaller than either water or glycerol. Richtmyer-Meshkov instability is an important factor in the breakup and atomization of liquid films induced by shock waves. Furthermore, a dispersal model is established to study breakup mechanisms of liquid films. The correlation between droplet size and velocity is revealed quantitatively. The research results may provide improved understanding of breakup mechanisms of liquid films, and have important implications for many fields, especially for heterogeneous detonations of gas/liquid mixtures.
Keywords:  shock wave      multiphase flow      Richtmyer-Meshkov instability  
Received:  05 March 2020      Revised:  11 May 2020      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  47.55.Ca (Gas/liquid flows)  
  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11802136) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11802136).
Corresponding Authors:  Bin Li, Lifeng Xie     E-mail:  libin@njust.edu.cn;xielifeng319@sina.com

Cite this article: 

Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰) Experimental investigation on the properties of liquid film breakup induced by shock waves 2020 Chin. Phys. B 29 086201

[1] Guildenbecher D R, Lopez-Rivera C and Sojka P E 2009 Exp. Fluids 46 371
[2] Qian L J and Lin J Z 2011 Sci. Chin.-Phys. Mech. Astron. 54 2109
[3] Wang J, Ruan W J, Wang H and Zhang L L 2019 Chin. Phys. B 28 064704
[4] Pilch M and Erdman C A 1987 Int. J. Multiph. Flow 13 741
[5] Hsiang L P and Faeth G M 1992 Int. J. Multiph. Flow 18 635
[6] Hsiang L P and Faeth G M 1993 Int. J. Multiph. Flow 19 721
[7] Hsiang L P and Faeth G M 1995 Int. J. Multiph. Flow 21 545
[8] Dumouchel C 2008 Exp. Fluids 45 371
[9] Chauvin A, Daniel E, Chinnayya A, Massoni J and Jourdan G 2016 Shock Waves 26 403
[10] Yao C, Zheng J, Zhao Y, Zhang Q and Chen G 2019 Chem. Eng. J. 373 437
[11] Liang W, Wang D, Cai Z, Li Z, Huang X, Gao Z, Derksen J J and Komrakova A E 2019 Chem. Engin. J. 386 121812
[12] Luo X, Yan H, Huang X, Yang D, Wang J and He L 2017 J. Colloid Interface Sci. 505 460
[13] Liao B, Zhang G F, Zhu Y J, Li Z F, Li E Q and Yang J M 2018 Sci. Chin.-Phys. Mech. Astron. 61 104721
[14] Zhao H, Wu Z W, Li W F, Xu J L and Liu H F 2018 Fuel 221 138
[15] Bowen P J and Cameron L R J 1999 Process Saf. Environ. Protect. 77 22
[16] Jackson S, Lee B J and Shepherd J E 2016 Combust. Flame 167 24
[17] Yoshida K, Hayashi K, Morii Y, Murakami K, Tsuboi N and Hayashi A K 2016 Combust. Sci. Technol. 188 2012
[18] Zhang B and Liu H 2019 Fuel 258 116132
[19] Zhang B, Liu H, Yan B and Hoi Dick N 2020 Fuel 259 116220
[20] Hu E, Tian H, Zhang X, Li X and Huang Z 2017 Fuel 188 90
[21] Liu X, Wang Y and Zhang Q 2016 Fuel 165 279
[22] Liu X, Zhang Q and Wang Y 2015 Process Saf. Environ. Protect. 95 184
[23] Prasad J K, Rasheed A, Kumar S and Sturtevant B 2000 Phys. Fluids 12 2108
[24] You Z M, Li B, Wang H Y and Xie L F 2017 J. Aerosol. Sci. 106 100
[25] Gardner D R 1990 Technical Report:Near-field dispersal modeling for liquid fuel-air explosives (U.S. Department of Energy Office of Scientific and Technical Information OSTI.GOV)
[26] Samirant M 1999 Prevention of Hazardous Fires and Explosions (Berlin:Springer) Chap. 26 pp. 123-134
[27] Meshkov E E 1972 Fluid Dyn. 4 101
[28] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297
[29] Taylor G I 1950 Proc. R. Soc. London A 201 192
[30] Rayleigh 1882 Proc. London Math. Soc. s1-14 170
[31] Zhai Z G, Zou L Y, Wu Q and Luo X S 2018 Proc. Inst. Mech. Eng. Part. C-J. Eng. Mech. Eng. Sci. 232 2830
[32] Morgan R V, Aure R, Stockero J D, Greenough J A, Cabot W, Likhachev O A and Jacobs J W 2012 J. Fluid Mech. 712 354
[33] Huete R d L C, Velikovich A L and Wouchuk J G 2011 Phys. Rev. E 83 056320
[34] Planchette C, Mercuri A, Arcangeli L, Kriechbaum M and Laggner P 2017 AAPS PharmSciTech. 18 3053
[1] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[2] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[3] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[4] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[5] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[6] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[7] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[8] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[9] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[10] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min (税敏), Chu Gen-Bai (储根柏), Xin Jian-Ting (辛建婷), Wu Yu-Chi (吴玉迟), Zhu Bin (朱斌), He Wei-Hua (何卫华), Xi Tao (席涛), Gu Yu-Qiu (谷渝秋). Chin. Phys. B, 2015, 24(9): 094701.
[11] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue (张略), Wang Xiang-Da (王祥达), Liu Xiao-Zhou (刘晓宙), Gong Xiu-Fen (龚秀芬). Chin. Phys. B, 2015, 24(1): 014301.
[12] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang (刘天航), Hao Zuo-Qiang (郝作强), Gao Xun (高勋), Liu Ze-Hao (刘泽昊), Lin Jing-Quan (林景全). Chin. Phys. B, 2014, 23(8): 085203.
[13] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[14] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[15] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
No Suggested Reading articles found!