Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024301    DOI: 10.1088/1674-1056/26/2/024301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Study on shock wave-induced cavitation bubbles dissolution process

Huan Xu(许欢)1,2, Peng-Fei Fan(范鹏飞)1, Yong Ma(马勇)3, Xia-Sheng Guo(郭霞生)1, Ping Yang(杨平)2, Juan Tu(屠娟)1, Dong Zhang(章东)1
1 Key Laboratory of Modern Acoustics of the Ministry of Education, Nanjing University, Nanjing 210093, China;
2 National Institute of Metrology, Beijing 100029, China;
3 Institute of Traumatology and Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China
Abstract  

This study investigated dissolution processes of cavitation bubbles generated during in vivo shock wave (SW)-induced treatments. Both active cavitation detection (ACD) and the B-mode imaging technique were applied to measure the dissolution procedure of biSpheres contrast agent bubbles by in vitro experiments. Besides, the simulation of SW-induced cavitation bubbles dissolution behaviors detected by the B-mode imaging system during in vivo SW treatments, including extracorporeal shock wave lithotripsy (ESWL) and extracorporeal shock wave therapy (ESWT), were carried out based on calculating the integrated scattering cross-section of dissolving gas bubbles with employing gas bubble dissolution equations and Gaussian bubble size distribution. The results showed that (i) B-mode imaging technology is an effective tool to monitor the temporal evolution of cavitation bubbles dissolution procedures after the SW pulses ceased, which is important for evaluation and controlling the cavitation activity generated during subsequent SW treatments within a treatment period; (ii) the characteristics of the bubbles, such as the bubble size distribution and gas diffusion, can be estimated by simulating the experimental data properly.

Keywords:  bubble cavitation      shock wave      B-mode imaging      residual bubbles      bubble dissolution  
Received:  10 October 2016      Revised:  14 November 2016      Accepted manuscript online: 
PACS:  43.25.Yw (Nonlinear acoustics of bubbly liquids)  
  43.35.Wa (Biological effects of ultrasound, ultrasonic tomography)  
  43.80.+p (Bioacoustics)  
Fund: 

Project partially supported by the National Natural Science Foundation of China (Grant Nos. 81627802, 81473692, 81673995, 11374155, 11574156, 11474001, 11474161, 11474166, and 11674173), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151007), and the Qing Lan Project of Jiangsu Province, China.

Corresponding Authors:  Juan Tu, Dong Zhang     E-mail:  juantu@nju.edu.cn;dzhang@nju.edu.cn

Cite this article: 

Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东) Study on shock wave-induced cavitation bubbles dissolution process 2017 Chin. Phys. B 26 024301

[1] Zderic V, Keshavarzi A, Noble M L, Paun M, Sharar S R, Crum L A and Martin R W 2006 Ultrasonics 44 46
[2] Liu T H, Hao Z Q, Gao X, Liu Z H and Lin J Q 2014 Chin. Phys. B 23 085203
[3] Crum L A 1988 J. Urol. 140 1587
[4] Pitt W G, Husseini G A and Staples B J 2004 Expert Opin. Drug. Deliv. 1 37
[5] Brown M R D, Farquhar-Smith P, Williams J E, ter Haar G and de Souza N M 2015 Br. J. Anaesth. 115 520
[6] Evan A P, Willis L R, McAteer J A, Bailey M R, Connors B A, Shao Y Z, Lingeman J E, Williams J C, Fineberg N S and Crum L A 2002 J. Urol. 168 1556
[7] Zhou Y F, Qin J and Zhong P 2012 Ultrasound Med. Biol. 38 601
[8] Zhang L, Wang X D, Liu X Z and Gong X F 2015 Chin. Phys. B 24 014301
[9] Skolarikos A, Alivizatos G and De La Rosette 2006 J. Eur. Urol. 50 873
[10] Evan A P, Willis L R, Lingeman J E and McAteer J A 1998 Nephron 78 1
[11] Qiao Y Z, Yin H, Li Z P and Wan M X 2013 Ultrason. Sonochem. 20 1376
[12] Delius M 1997 Ultrasound Med. Biol. 23 611
[13] Paterson R F, Lifshitz D A, Lingeman J E, Evan A P, Connors B A, Fineberg N S, Williams J C Jr and McAteer J A 2002 J. Urol. 168 2211
[14] Zhong P and Zhou Y F 2001 J. Acoust. Soc. Am. 110 3283
[15] Zhou Y F and Zhong P 2003 J. Acoust. Soc. Am. 113 586
[16] Tu J, Matula T J, Bailey M R and Crum L A 2007 Phys. Med. Biol. 52 5933
[17] Brennen C E 2002 J. Fluid Mech. 472 153
[18] Pishchalnikov Y A, Williams J C and McAteer J A 2011 J. Acoust. Soc. Am. 130 EL87
[19] Pishchalnikov Y A, Sapozhnikov O A, Bailey M R, Pishchalnikova I V, Williams J C and McAteer J A 2005 Acoust. Res. Lett. Online 6 280
[20] Duryea A P, Roberts W W, Cain C A, Tamaddoni H A and Hall T L 2014 J. Endourol. 28 90
[21] Duryea A P, Roberts W W, Cain C A, Tamaddoni H A and Hall T L 2015 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62 896
[22] Sapozhnikov O A, Khokhlova V A, Bailey M R, Williams J C, McAteer J A, Cleveland R O and Crum L A 2002 J. Acoust. Soc. Am. 112 1183
[23] Epstein P S and Plesset M S 1950 J. Chem. Phys. 18 1505
[24] Chen W S, Matula T J and Crum L A 2002 Ultrasound Med. Biol. 28 793
[25] Bailey M R, Pishchalnikov Y A, Sapozhnikov O A, Cleveland R O, McAteer J A, Miller N A, Pishchalnikova I V, Connors B A, Crum L A and Evan A P 2005 Ultrasound Med. Biol. 31 1245
[26] Church C C 1995 J. Acoust. Soc. Am. 97 1510
[27] Hoff L, Sontum P C and Hovem J M 2000 J. Acoust. Soc. Am. 107 2272
[28] Church C C 1989 J. Acoust. Soc. Am. 86 215
[29] Postema M, Bouakaz A, Chin C T and de Jong N 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 523
[30] Postema M, van Wamel A, Lancée C T and de Jong N 2004 Ultrasound Med. Biol. 30 827
[31] Crum L A 1979 Nature 278 148
[32] Crum L A and Mao Y 1996 J. Acoust. Soc. Am. 99 2898
[33] Van Liew H D and Raychaudhuri S 1997 J. Appl. Physiol. 82 2045
[34] Chappell M A and Payne S J 2006 Resp. Physiol. Neurobi. 152 100
[1] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[2] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[3] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[4] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[5] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[6] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[7] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[8] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[9] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min (税敏), Chu Gen-Bai (储根柏), Xin Jian-Ting (辛建婷), Wu Yu-Chi (吴玉迟), Zhu Bin (朱斌), He Wei-Hua (何卫华), Xi Tao (席涛), Gu Yu-Qiu (谷渝秋). Chin. Phys. B, 2015, 24(9): 094701.
[10] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue (张略), Wang Xiang-Da (王祥达), Liu Xiao-Zhou (刘晓宙), Gong Xiu-Fen (龚秀芬). Chin. Phys. B, 2015, 24(1): 014301.
[11] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang (刘天航), Hao Zuo-Qiang (郝作强), Gao Xun (高勋), Liu Ze-Hao (刘泽昊), Lin Jing-Quan (林景全). Chin. Phys. B, 2014, 23(8): 085203.
[12] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[13] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[14] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[15] A fiber-array probe technique for measuring the viscosity of a substance under shock compression
Feng Li-Peng (冯立鹏), Liu Fu-Sheng (刘福生), Ma Xiao-Juan (马小娟), Zhao Bei-Jing (赵北京), Zhang Ning-Chao (张宁超), Wang Wen-Peng (王文鹏), Hao Bin-Bin (郝斌斌). Chin. Phys. B, 2013, 22(10): 108301.
No Suggested Reading articles found!