Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 025203    DOI: 10.1088/1674-1056/26/2/025203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas

Apul N Dev
Center for Applied Mathematics, Siksha'O'Anusandhan University, Khandagiri, Bhubaneswar-751030, Odisha, India
Abstract  The dust acoustic (DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dimensional (3D) Burgers equation, and shock wave solution is explored by the tan-hyperbolic method. The effects of flat trapped and trapped electron distributions in the presence of Maxwellian and non-Maxwellian ions on characteristics shock waves are observed. The temperature ratio of non-Maxwellian ion temperature and non-isothermal electron temperature is found to play an important role in forming the shock-like structure.
Keywords:  dust acoustics shock wave      dust charge fluctutations      non-isothermal electrons      tan-hyperbolic method  
Received:  22 June 2016      Revised:  27 November 2016      Accepted manuscript online: 
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Tc (Shock waves and discontinuities)  
Corresponding Authors:  Apul N Dev     E-mail:  apulnarayan@gmail.com

Cite this article: 

Apul N Dev Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas 2017 Chin. Phys. B 26 025203

[1] D'Angelo N 1995 J. Phys. D 28 1009
[2] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[3] Barkar A, Meclino R L and D'Angelo N 1995 Phys. Plasmas 2 3563
[4] Deka M K, Adhikary N C, Misra A P, Bailung H and Nakamura Y 2012 Phys. Plasmas 19 103704
[5] Rao N N, Shukla P K and Yu M Y 1990 Planet Space Sci. 38 543
[6] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[7] Barkan A, Merlino R L and D'Angelo N 1996 Planet Space Sci. 44 239
[8] Dev A N, Sarma J, Deka M K and Adhikary N C 2015 Plasma Sci. Technol. 17 268
[9] Sarma J and Dev A N 2014 Indian J. Pure Appl. Phys. 52 747
[10] Dev A N, Deka M K and Sarma J 2015 Can. J. Phys. 93 1030
[11] Xie Z J, Sui Y, Wang Y, Wang X J, Wang Y, Liu Z G, Li B S, Bai Y and Wang Z H 2016 Chin. Phys. Lett. 33 015201
[12] Huang F, Liu Y H, Chen Z Y, Wang L and Ye M F 2013 Chin. Phys. Lett. 30 115201
[13] Farokhi B and Eghbali M 2012 Chin. Phys. Lett. 29 075202
[14] Gong W H, Zhang Y L, Feng F, Liu F C and He Y F 2015 Acta Phys. Sin. 64 195202 (in Chinese)
[15] Li X L and Shi Y X 2014 Acta Phys. Sin. 63 215201 (in Chinese)
[16] Zhao X Y, Zhang B K and Zhang K Y 2013 Acta Phys. Sin. 62 175201 (in Chinese)
[17] Zhang C L, Kong W, Yang F, Liu S F and Hu B L 2013 Acta Phys. Sin. 62 095201 (in Chinese)
[18] Li L Q, Shi Y X, Wang F and Wei B 2012 Acta Phys. Sin. 61 125201 (in Chinese)
[19] Zhang Y L, Feng F, Liu F C, Dong L F and He Y F 2016 Chin. Phys. B 25 025201
[20] Liu X M, Li Q N and Li R 2015 Chin. Phys. B 24 075204
[21] El-Labany S K, El-Shamy E F, El-Taibany W F and Zedan N A 2015 Chin. Phys. B 24 035201
[22] Liu X M, Li Q N and Xu X 2014 Chin. Phys. B 23 085202
[23] Bandyapadhyay A and Das K P 1999 J. Plasma Phys. 62 255
[24] Bhattacharya S K, Paul S N and Chakraborty B 2003 Indian J. Phys. B 77 327
[25] Paul S N, Pakira G, Paul B and Ghosh B 2012 Acta Phys. Polonica A 122 116
[26] Mamun A A, Shukla P K and Cairns R A 1996 Phys. Plasmas 3 2610
[27] Dorranian D and Sabetkar A 2012 Phys. Plasmas 19 013702
[28] Adhikary N C, Deka M C, Dev A N and Sarma J 2014 J. Phys. Plasmas 21 083703
[29] Dev A N, Deka M K, Subedi R and Sarma J 2015 Plasma Sci. Technol. 17 721
[30] El-Shewy E K, Mahmoud A A, Tawfik A M, Abulwafa E M and Elgarayhi A 2014 Chin. Phys. B 23 070505
[31] Shahmansouri M 2012 Chin. Phys. Lett. 29 105201
[32] Rehman H U 2012 Chin. Phys. Lett. 29 065201
[33] Abrishami S A and Kadijani M N 2014 Plasma Sci. Technol. 16 545
[34] Ghosh S, Sarkar S, Khan M and Gupta M R 2001 Phys. Sci. 63 395
[35] El-Shamy E F 2005 Chaos, Solitons & Fractals 25 665
[36] Duan W S, Lü K P and Zhan J B 2001 Chin. Phys. Lett. 18 1088
[37] Haider M M, Ferdous T, Duha S S and Mamun A A 2014 Open J. Modern Phys. 1 13
[38] El-Wakil S A, Attia M T, El-Shewy E K, Zaghbeerand S K and Abdelwahed H G 2011 Appl. Appl. Math. 6 211
[39] Zobaer M S, Nahar L, Mukta K N, Roy N and Mamun A A 2013 Astrophys. & Space Sci. 346 351
[40] Paul S K 2012 Asian Trans. Sci. Technol. 2 25
[41] Tasnim I, Masud M M, Anowar M G and Mamun A A 2015 IEEE Trans. Plasma Sci. 43 2187
[42] Tasnim I Masud M M and Mamun A A 2013 Astrophys. Space Sci. 343 647
[43] Asaduzzaman M and Mamun A A 2012 Phys. Plasmas 19 093704
[44] Annou K and Annou R 2012 J. Phys. 78 121
[45] Pakzad H R 2011 World Acad. Sci. Eng. Tech. 5 906
[46] Ergun R E, Carlson C W, McFadden J P, et al. 1998 Geophys. Res. Lett. 25 2041
[47] Duan W S 2003 Chin. Phys. 12 479
[48] Zobaer M S, Mukta K N, Nahar L, Roy N and Mamun A A 2013 IEEE Trans. Plasma Sci. 41 1614
[49] Mamun A A and Zobaer M S 2014 Phys. Plasmas 21 022101
[50] Ghosh S 2009 Phys. Plasmas 16 103701
[51] Dev A N, Sarma J and Deka M K 2015 Can. J. Phys. 93 1030
[52] Dev A N, Sarma J, Deka M K and Adhikary N C 2015 Plasma Sci. Technol. 17 268
[53] Tribeche M, Houili H and Zerguini T H 2004 Phys. Plasmas 11 3001
[54] Michael C A, Howard J and Blackwell B D 2004 Phys. Plasmas 11 4008
[55] Maier E J and Hoffman J H 1974 J. Geophys. Res. 79 2444
[56] El-Awady E I, El-Tantawya S A, Moslem W M and Shukla P K 2010 Phys. Lett. A 374 3216
[57] Chuang S and Hau L 2009 Phys. Plasmas 16 022901
[1] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[2] Distribution of charged lunar dust in the south polar region of the moon
Qing Xia(夏清), Ming-Hui Cai(蔡明辉), Liang-Liang Xu(许亮亮), Rui-Long Han(韩瑞龙), Tao Yang(杨涛), and Jian-Wei Han(韩建伟). Chin. Phys. B, 2022, 31(4): 045201.
[3] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[4] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[5] Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force
Mahmood A. H. Khaled, Mohamed A. Shukri, and Yusra A. A. Hager. Chin. Phys. B, 2022, 31(1): 010505.
[6] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[7] Directional motion of dust particles at different gear structuresin a plasma
Chao-Xing Dai(戴超星), Chao Song(宋超), Zhi-Xiang Zhou(周志向), Wen-Tao Sun(孙文涛), Zhi-Qiang Guo(郭志强), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2020, 29(2): 025203.
[8] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[9] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[10] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[11] Electric field in two-dimensional complex plasma crystal: Simulated lattices
Behnam Bahadory. Chin. Phys. B, 2018, 27(2): 025202.
[12] Dust charging and levitating in a sheath of plasma containing energetic particles
Jing Ou(欧靖), Xiao-Yun Zhao(赵晓云), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2018, 27(2): 025204.
[13] Rotation of a single vortex in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2017, 26(9): 095202.
[14] Drift vortices in inhomogeneous collisional dusty magnetoplasma
Jian-Rong Yang(杨建荣), Kui Lv(吕岿), Lei Xu(许磊), Jie-Jian Mao(毛杰键), Xi-Zhong Liu(刘希忠), Ping Liu(刘萍). Chin. Phys. B, 2017, 26(6): 065202.
[15] Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture
Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉). Chin. Phys. B, 2017, 26(4): 045202.
No Suggested Reading articles found!