Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117502    DOI: 10.1088/1674-1056/22/11/117502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A quantum explanation of the magnetic properties of Mn-doped graphene

Lei Tian-Min (雷天民)a, Liu Jia-Jia (刘佳佳)a, Zhang Yu-Ming (张玉明)b, Guo Hui (郭辉)b, Zhang Zhi-Yong (张志勇)c
a School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China;
b School of Microelectronics, Xidian University, Xi’an 710071, China;
c School of Information Technology, Northwest University, Xi’an 710069, China
Abstract  Mn-doped graphene is investigated using first-principles calculations based on the density functional theory (DFT). The magnetic moment is calculated for systems of various sizes, and the atomic populations and the density of states (DOS) are analyzed in detail. It is found that Mn doped graphene-based diluted magnetic semiconductors (DMS) have strong ferromagnetic properties, the impurity concentration influences the value of the magnetic moment, and the magnetic moment of the 8×8 supercell is greatest for a single impurity. The graphene containing two Mn atoms together is more stable in the 7×7 supercell. The analysis of the total DOS and partial density of states (PDOS) indicates that the magnetic properties of doped graphene originate from the p–d exchange, and the magnetism is given a simple quantum explanation using the Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange theory.
Keywords:  graphene      first-principles calculation      doping      ferromagnetic properties  
Received:  12 March 2013      Revised:  24 June 2013      Accepted manuscript online: 
PACS:  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707).
Corresponding Authors:  Lei Tian-Min     E-mail:  tmlei@mail.xidian.edu.cn

Cite this article: 

Lei Tian-Min (雷天民), Liu Jia-Jia (刘佳佳), Zhang Yu-Ming (张玉明), Guo Hui (郭辉), Zhang Zhi-Yong (张志勇) A quantum explanation of the magnetic properties of Mn-doped graphene 2013 Chin. Phys. B 22 117502

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
[3] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[4] Xu J M, Hu X H and Sun L T 2012 Acta Phys. Sin. 61 027104 (in Chinese)
[5] Wehling T O, Katsnelson M I and Lichtenstein A I 2008 Appl. Phys. Lett. 93 202110
[6] Leenaerts O, Partoens B and Peerers F M 2008 Phys. Rev. B 77 125416
[7] Wu M, Liu E Z, Ge M Y and Jiang J Z 2009 Appl. Phys. Lett. 94 102505
[8] Dai X Q, Tang Y N, Zhao J H and Dai Y W 2010 J. Phys.: Condens. Matter 22 316005
[9] Dedkov Y S, Shikin A M, Adamchuk V K, Molodtsov S L, Laubschat C, Bauer A and Kaindl G 2001 Phys. Rev. B 64 35405
[10] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790
[11] Bhattacharya A, Bhattacharya S, Majumder C and Das G P 2010 J. Phys. Chem. C 114 10297
[12] Nemnes G A 2012 J. Nanomaterials 2012 748639
[13] Hu X H, Xu J M and Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese)
[14] Eelbo T, Waśniowska M, Thakur P, Gyamfi M, Sachs B, Wehling T O, Forti S, Starke U, Tieg C, Lichtenstein A I and Wiesendanger R 2013 Phys. Rev. Lett. 110 136804
[15] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[16] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[17] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Pfrommer B G, Cote M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Gorjizadeh N and Kawazoe Y 2008 Materials Transactions 49 2445
[23] Wu M, Cao C and Jiang J Z 2010 New J. Phys. 12 063020
[24] Santos E J G, Ayuela A and Sánchez-Portal D 2010 New J. Phys. 12 053012
[25] Seman T F, Ahn K H, Lookman T, Saxena A, Bishop A R and Littlewood P B 2012 Phys. Rev. B 86 184106
[26] AlZahrani A Z 2012 Physica B 407 992
[27] Stöhr J and Siegmann H C 2010 Magnetism (Beijing: World Publishing Company) pp. 290–292
[28] Nolting W and Ramakanth A 2009 Quantum Theory of Magnetism (New York: Springer Heidelberg Dordrecht New York) pp. 207–209
[29] Jin H Q 2013 Magnetic Physics (Beijing: Science Press) pp. 84–90 (in Chinese)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[8] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[11] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[12] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[13] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[14] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!