CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Near-field optical observations of surface plasmon wave interference at subwavelength hole arrays perforated in Au film |
Li Jiang-Yan (李江艳)a, Gan Lin (甘霖)b, Li Zhi-Yuan (李志远)b |
a International Center for Quantum Materials, Peking University, Beijing 100871, China;
b Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We image optical near-field patterns at subwavelength circular hole arrays in Au film by using scanning near-field optical microscopy in near-infrared wavelengths. Periodical oscillation features are found in the near-field images at the air/Au interface and exhibit two typical kinds of standing wave oscillation forms at the wavelengths corresponding to the transmission minimum and maximum in the transmission spectrum, and the latter one originates from the excitation and interference of a surface plasmon wave at the metallic hole arrays. Our work indicates that monitoring optical near-field patterns can help to reveal many interesting properties of surface plasmon waves at metallic nanostructures and understand their underlying physical mechanisms.
|
Received: 14 May 2013
Revised: 10 August 2013
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
07.79.Fc
|
(Near-field scanning optical microscopes)
|
|
52.35.Fp
|
(Electrostatic waves and oscillations (e.g., ion-acoustic waves))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922002 and 2013CB632704) and the Knowledge Innovation Program of the Chinese Academy of Sciences. |
Corresponding Authors:
Li Jiang-Yan, Li Zhi-Yuan
E-mail: yanr163@163.com;lizy@aphy.iphy.ac.cn
|
Cite this article:
Li Jiang-Yan (李江艳), Gan Lin (甘霖), Li Zhi-Yuan (李志远) Near-field optical observations of surface plasmon wave interference at subwavelength hole arrays perforated in Au film 2013 Chin. Phys. B 22 117302
|
[1] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[2] |
Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia- Vidal F J and Ebbesen T W 2002 Sciencee 297 820
|
[3] |
Salomon L, Grillot F, Zayats A V and de Fornel F 2001 Phys. Rev. Lett. 86 1110
|
[4] |
Biswas R, Neginhal S, Ding C G, Puscasu I and Johnson E 2007 J. Opt. Soc. Am. B 24 2589
|
[5] |
Liu H and Lalanne P 2008 Nature 452 728
|
[6] |
Thio T, Ghaemi H F, Lezec H J, Wolff P A and Ebbesen T W 1999 J. Opt. Soc. Am. B 16 1743
|
[7] |
Chang Y T, Yang C H, Tsai M W and Lee S C 2007 Appl. Phys. Lett. 90 213101
|
[8] |
Kwak E S, Henzie J, Chang S H, Gray S K, Schatz G C and Odom T W 2005 Nano. Lett. 5 1963
|
[9] |
Hecht B, Bielefeldt H, Novotny L, Inouye Y and Pohl D W1996 Phys. Rev. Lett. 77 1889
|
[10] |
Esteban R, Vogelgesang R, Dorfmuller J, Dmitriev A, Rockstuhl C, Etrich C and Kem K 2008 Nano. Lett. 8 3155
|
[11] |
Chang S H, Gray S K and Schatz G C 2005 Opt. Express 13 3150
|
[12] |
Bozhevolnyi S I and Coello V 1998 Phys. Rev. B 58 10899
|
[13] |
Gay G, Alloschery O, de Lesegno B V, O’Dwyer C,Weiner J and Lezec H J 2006 Nat. Phys. 2 262
|
[14] |
Lalanne P and Hugonin J P 2006 Nat. Phys. 2 551556
|
[15] |
Mrejen M, Israel A, Taha H, PalchanMand Lewis A 2007 Opt. Express 15 9129
|
[16] |
Sun M, Liu R J, Li Z Y, Feng S, Cheng B Y, Zhang D Z, Yang H F and Jin A Z 2006 Phys. Rev. B 74 193404
|
[17] |
Aigouy L, Lalanne P, Hugonin J P, Julie G and Mathet V 2007 Phys. Rev. Lett. 98 153902
|
[18] |
Tetz K A, Rokitski R, NezhadMand Fainman Y 2005 Appl. Phys. Lett. 86 111110
|
[19] |
Altewischer E, van ExterMP andWoerdman J P 2003 J. Opt. Soc. Am. B 20 1927
|
[20] |
Tao H H, Liu R J, Li Z Y, Feng S, Liu Y Z, Ren C, Cheng B Y, Zhang D Z, Ma H Q, Wu L A and Zhang Z B 2006 Phys. Rev. B 74 205111
|
[21] |
Li J Y, Li Z Y, Yang H F and Jin A Z 2008 J. Appl. Phys. 104 114303
|
[22] |
Guestin L, Adam A J L, Knab J R, Nagel M and Planken P C M 2009 Opt. Express 17 17412
|
[23] |
Liu C, Chen N and Sheppard C 2007 Appl. Phys. Lett. 90 011501
|
[24] |
Wellems L D, Huang D, Leskova T A and Maradudin A A 2009 J. Appl. Phys. 106 053705
|
[25] |
Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P, Schider G, Gotschy W, Leitner A, Aussenegg F R and Girard C 1999 Phys. Rev. Lett. 82 2590
|
[26] |
Yin L, Vlasko-Vlasov V K, Rydh A, Pearson J, Welp U, Chang S H, Gray S K, Schatz G C, Brown D B and Kimball C W 2004 Appl. Phys. Lett. 85 467
|
[27] |
Verhagen E, Dionne J A, Kuipers L, Atwater H A and Polman A 2008 Nano Lett. 8 2925
|
[28] |
Li Z Y and Lin L L 2003 Phys. Rev. E 67 046607
|
[29] |
Li Z Y and Ho K M 2003 Phys. Rev. B 68 245117
|
[30] |
Palik E D 1985 Handbook of Optical Constant of Solids (Orlando: Academic Press)
|
[31] |
Wang J, Fu Y Q, Xu Z W and Fang F Z 2013 Quantum Matter 2 289
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|