Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 116802    DOI: 10.1088/1674-1056/22/11/116802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Simple statistical model for predicting thermal atom diffusion on crystal surfaces

Yu Wei-Feng (于卫锋), Lin Zheng-Zhe (林正喆), Ning Xi-Jing (宁西京)
Institute of Modern Physics, Department of Nuclear Science and Technology, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai 200433, China
Abstract  A simple model based on the statistics of single atoms is developed to predict the diffusion rate of thermal atoms in (or on) bulk materials without empirical parameters. Compared with vast classical molecular-dynamics simulations for predicting the self-diffusion rate of Pt, Cu, and Ar adatoms on crystal surfaces, the model is proved to be much more accurate than the Arrhenius law and the transition state theory. Applying this model, the theoretical predictions agree well with the experimental values in the presented paper about the self-diffusion of Pt (Cu) adatoms on the surfaces.
Keywords:  adatoms diffusion      Arrhenius law      transition state theory      molecular dynamics simulations  
Received:  26 April 2013      Revised:  17 June 2013      Accepted manuscript online: 
PACS:  68.35.Fx (Diffusion; interface formation)  
  82.20.Db (Transition state theory and statistical theories of rate constants)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51071048).
Corresponding Authors:  Ning Xi-Jing     E-mail:  xjning@fudan.edu.cn

Cite this article: 

Yu Wei-Feng (于卫锋), Lin Zheng-Zhe (林正喆), Ning Xi-Jing (宁西京) Simple statistical model for predicting thermal atom diffusion on crystal surfaces 2013 Chin. Phys. B 22 116802

[1] Arrhenius S 1889 Z. Phys. Chem. 4 226
[2] Tolman R C 1920 J. Am. Chem. Soc. 42 2506
[3] Flynn J H 1990 J. Therm. Anal. 36 1579
[4] Levine I 1983 Physical Chemistry (New York: McGraw-Hill)
[5] Smith I W M 2008 Chem. Soc. Rev. 37 812
[6] Zangwill A 1996 Physics At Surfaces (New York: Cambridge University Press)
[7] Zhang Z Y and Lagally M G 1997 Science 276 377
[8] Mullin J W 2000 Crystallization (Amsterdam: Butterworth- Heinemann)
[9] Smith W F 2006 Foundations of Materials Science and Engineering (New York: McGraw-Hill)
[10] Celina M, Gillen K T and Assink R A 2005 Polym. Degrad. Stab. 90 395
[11] Marinica M C, Barreteau C, Spanjaard D and Desjonqueres M C 2005 Phys. Rev. B 72 115402
[12] Vineyard G H 1957 J. Phys. Chem. 3 121
[13] Tsong T T, Chang C S, Hwang I S, Fu T Y, Su W B, Ho M S and Lo R L 2001 Phys. Chem. Solids 62 1689
[14] Boisvert G and Lewis L J 1997 Phys. Rev. B 56 7643
[15] Kim S Y, Lee I H and Jun S 2007 Phys. Rev. B 76 245407
[16] Panagiotides N and Papanicolaou N I 2010 Int. J. Quantum Chem. 110 202
[17] Boisvert G, Lewis L J and Scheffler M 1998 Phys. Rev. B 57 1881
[18] Bott M, Hohage M, Morgenstern M, Michely T and Comsa G 1996 Phys. Rev. Lett. 76 1304
[19] Feibelman P J, Nelson J S and Kellogg G L 1994 Phys. Rev. B 49 10548
[20] de Miguel J J, Sánchez A, Cebollada A, Gallego J M, Ferrón J and Ferrer S 1987 Surf. Sci. 189/190 1062
[21] Breeman M and Boerma D O 1992 Surf. Sci. 269/270 224
[22] Meyer W and Neldel H 1937 Z. Tech. Phys. 12 588
[23] Boisvert G, Lewis L J and Yelon A 1995 Phys. Rev. Lett. 75 469
[24] Lin Z Z, YuWF,Wang Y and Ning X J 2011 EuroPhys. Lett. 94 40002
[25] Gong X F, Wang L, Ning X J and Zhuang J 2004 Surf. Sci. 553 181
[26] Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711
[27] Mazyar O A, Xie HWand HaseWL 2005 J. Chem. Phys. 122 094713
[28] Yelon A and Movaghar B 1990 Phys. Rev. Lett. 65 618
[29] Yelon A, Movaghar B and Branz H M 1992 Phys. Rev. B 46 12244
[30] Fabrizio C and Vittorio R 1993 Phys. Rev. B 48 22
[31] Yin C, Ning X J, Zhuang J, Xe Y Q, Gong X F, Ye X X, Ming C and Jin Y F 2009 Appl. Phys. Lett. 94 183107
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[5] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[6] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[7] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[8] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[9] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[10] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[11] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[12] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[13] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[14] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
[15] Nano watermill driven by revolving charge
Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军). Chin. Phys. B, 2015, 24(7): 074702.
No Suggested Reading articles found!