Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110305    DOI: 10.1088/1674-1056/22/11/110305
GENERAL Prev   Next  

Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED

Li Hong-Yi (李虹轶), Wu Chun-Wang (吴春旺), Chen Yu-Bo (陈玉波), Lin Yuan-Gen (林源根), Chen Ping-Xing (陈平形), Li Cheng-Zu (李承祖)
College of Science, National University of Defense Technology, Changsha 410073, China
Abstract  We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity–SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology.
Keywords:  Grover search      quantum partial search      qudit      superconducting quantum interference device (SQUID)  
Received:  05 June 2013      Revised:  08 August 2013      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774192).
Corresponding Authors:  Li Hong-Yi     E-mail:  hongyili@nudt.edu.cn

Cite this article: 

Li Hong-Yi (李虹轶), Wu Chun-Wang (吴春旺), Chen Yu-Bo (陈玉波), Lin Yuan-Gen (林源根), Chen Ping-Xing (陈平形), Li Cheng-Zu (李承祖) Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED 2013 Chin. Phys. B 22 110305

[1] Grover L K 1997 Phys. Rev. Lett. 79 325
[2] Zalka C 1999 Phys. Rev. A 60 2746
[3] Korepin V E and Grover L K 2006 Quantum Info. Process. 5 5
[4] Korepin V E 2005 J. Phys. A: Math. Gen. 38 L731
[5] Grover L K and Radhakrishnan J 2005 ACM Symposium on Parallel Algorithms and Architectures, July 18, 2005 Las Vegas, Nevada, USA
[6] Korepin V E and Grover L K 2006 Quantum Info. Process. 5 5
[7] Korepin V E and Vallilo B C 2006 Prog. Theor. Phys. 116 783
[8] Choi B S,Walker T A and Braunstein S L 2007 Quantum Info. Process. 6 1
[9] Li H Y, Wu C W, Liu W T, Chen P X and Li C Z 2011 Phys. Lett. A 375 4249
[10] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[11] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[12] Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
[13] Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature 431 159
[14] Shnirman A, Schön G and Hermon Z 1997 Phys. Rev. Lett. 79 2371
[15] Steinbach A, Joyez P, Cottet A, Esteve D, Devoret M H, Huber M E and Martinis J M 2001 Phys. Rev. Lett. 87 137003
[16] Blais A and Zagoskin A M 2000 Phys. Rev. A 61 042308
[17] Zhao N, Liu J S, Li T F and Chen W 2013 Acta Phys. Sin. 62 010301 (in Chinese)
[18] Plantenberg J H, Groot P C D, Harmans C J P M and Mooij J E 2007 Nature 447 836
[19] Wu Y L, Deng H, Huang K Q, Tian Y, Yu H F, Xue G M, Jin Y R, Li J, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 090312
[20] Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
[21] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
[22] Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902
[23] Feng M 2001 Phys. Rev. A 63 052308
[24] He X L, Yang C P, Li S, Luo J Y and Han S 2010 Phys. Rev. A 82 024301
[25] Song K H, Xiang S H, Liu Q and Lu D H 2007 Phys. Rev. A 75 032347
[26] Waseem M, Irfan M and Qamar S 2012 Physica C 477 24
[27] Han S, Rouse R and Lukens J E 1996 Phys. Rev. Lett. 76 3404
[28] Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902
[29] Song K H 2006 Chin. Phys. B 15 0286
[30] Shao X Q, Chen L, Zhang S and Zhao Y F 2009 Chin. Phys. B 18 5161
[31] Gamel O and James D F V 2010 Phys. Rev. A 82 052106
[32] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[33] Duan L M, Kuzmich A and Kimble H J 2003 Phys. Rev. A 67 032305
[34] Deng Z J, Gao K L and Feng M 2006 Phys. Rev. A 74 064303
[35] Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 014302
[36] França Santos M, Solano E and de Matos Filho R L 2001 Phys. Rev. Lett. 87 093601
[37] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J and Zoller P 2006 Phys. Rev. Lett. 97 033003
[38] Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
[39] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[3] Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit
Ling-Quan Chen(陈灵泉), Yu-Bo Sheng(盛宇波), Lan Zhou(周澜). Chin. Phys. B, 2019, 28(1): 010302.
[4] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[5] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[6] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[7] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[8] Probabilistic joint remote preparation of a high-dimensional equatorial quantum state
Zhan You-Bang(詹佑邦),Zhang Qun-Yong(张群永), and Shi Jin(施锦). Chin. Phys. B, 2010, 19(8): 080310.
[9] Implementation of a many-qubit Grover search by cavity QED
Fan Hao-Quan(范浩权),Yang Wan-Li(杨万里), Huang Xue-Ren(黄学人), and Feng Mang(冯芒). Chin. Phys. B, 2009, 18(11): 4893-4900.
[10] Quantum state sharing of an arbitrary qudit state by using nonmaximally generalized GHZ state
Tao Ying-Juan(陶应娟), Tian Dong-Ping(田东平), Hu Ming-Liang(胡明亮), and Qin Meng(秦猛) . Chin. Phys. B, 2008, 17(2): 624-627.
[11] Quantum search via superconducting quantum interference devices in a cavity
Lu Yan(卢艳), Dong Ping(董萍), Xue Zheng-Yuan(薛正远), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2007, 16(12): 3601-3604.
[12] Remote interactions between two d -dimensional distributed quantum systems: nonlocal generalized quantum control-NOT gate and entanglement swapping
Chen Li-Bing(陈立冰), Lu Hong(路洪), and Jin Rui-Bo(金瑞博). Chin. Phys. B, 2007, 16(11): 3204-3211.
[13] Controlled teleportation of multi-qudit quantum information
Zhan Xiao-Gui(詹孝贵), Li Hong-Mei(李红梅), Ji Hua(季花), and Zeng Hao-Sheng(曾浩生). Chin. Phys. B, 2007, 16(10): 2880-2887.
[14] Grover search algorithm in an ion trap system
Zheng Shi-Biao (郑仕标). Chin. Phys. B, 2005, 14(11): 2222-2225.
[15] Teleportation of a multiqubit state by an entangled qudit channel
Zheng Yi-Zhuang (郑亦庄), Gu Yong-Jian (顾永建), Wu Gui-Chu (吴桂初), Guo Guang-Can (郭光灿). Chin. Phys. B, 2003, 12(10): 1070-1075.
No Suggested Reading articles found!