Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104209    DOI: 10.1088/1674-1056/22/10/104209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The mobility of nonlocal solitons in fading optical lattices

Dai Zhi-Ping (戴志平), Ling Xiao-Hui (凌晓辉), Wang You-Wen (王友文), You Kai-Ming (游开明)
Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008, China
Abstract  We study the soliton mobility in nonlocal nonlinear media with an imprinted fading optical lattice. The results show that the transverse mobility of solitons varies with the lattice decay rate and the nonlocality degree, which provides an opportunity for all-optical control of light.
Keywords:  optical lattice      nonlocal soliton  
Received:  18 February 2013      Revised:  06 June 2013      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant Nos. 12JJ6001 and 13JJ4097), the Doctorial Start-up Fund of Hengyang Normal University of China (Grant No. 11B42), and the Construct Program of the Key Discipline in Hunan Province of China.
Corresponding Authors:  Dai Zhi-Ping     E-mail:  daizhi169@163.com

Cite this article: 

Dai Zhi-Ping (戴志平), Ling Xiao-Hui (凌晓辉), Wang You-Wen (王友文), You Kai-Ming (游开明) The mobility of nonlocal solitons in fading optical lattices 2013 Chin. Phys. B 22 104209

[1] Kartashov Y V, Vysloukh V A and Torner L 2009 Prog. Opt. 52 63
[2] Szameit A, Garanovich I L, Heinrich M, Minovich A, Dreisow F, Sukhorukov A A, Pertsch T, Neshev D N, Nolte S, Królikowski W, Tünnermann A, Mitchell A and Kivshar Y S 2008 Phys. Rev. A 78 031801
[3] Kartashov Y V, Zelenina A S, Torner L and Vysloukh V A 2004 Opt. Lett. 29 766
[4] Kartashov Y V, Vysloukh V A and Torner L 2005 J. Opt. Soc. Am. B 22 1356
[5] Pertsch T, Peschel U and Lederer F 2003 Chaos 13 744
[6] Kartashov Y V, Torner L and Vysloukh V A 2004 Opt. Lett. 29 1102
[7] Assanto G, Cisneros L A, Minzoni A A, Skuse B D, Smyth N F and Worthy A L 2010 Phys. Rev. Lett. 104 053903
[8] Zhang P, Egger R and Chen Z 2009 Opt. Express 17 13151
[9] Xavier J, Rose P, Terhalle B, Joseph J and Denz C 2009 Opt. Lett. 34 2625
[10] Królikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J and Edmundson D 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S288
[11] Ouyang S G, Hu W and Guo Q 2012 Chin. Phys. B 21 040505
[12] Xu Z, Kartashov Y V and Torner L 2005 Phys. Rev. Lett. 95 113901
[13] Dai Z P, Wang Y Q and Guo Q 2008 Phys. Rev. A 77 063834
[14] Ge L J, Wang Q, Shen M, Shi J L, Kong Q and Hou P 2009 Chin. Phys. B 18 616
[15] Zhou J, Ren H D and Feng Y P 2010 Acta Phys. Sin. 59 3992 (in Chinese)
[16] Hu S M, Ma X H, Lu D Q, Zheng Y Z and Hu W 2012 Phys. Rev. A 85 043826
[17] Bang O, Królikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
[18] Guo Q, Luo B, Yi F H, Chi S and Xie Y Q 2004 Phys. Rev. E 69 016602
[19] Dai Z P, Lu S Z and You K M 2013 Chin. Phys. B 22 014211
[20] Fleischer J W, Carmon T, Segev M, Efremidis N K and Christodoulides D N 2003 Phys. Rev. Lett. 90 023902
[21] Yang R C and Wu X L 2008 Opt. Express 16 17759
[22] Zhang P, Efremidis N K, Miller A, Hu Y and Chen Z 2010 Opt. Lett. 35 3252
[23] Bergstrom R W, Russell P B and Hignett P 2002 J. Atmos. Sci. 59 567
[24] Yakimenko A I, Lashkin V M and Prikhodko O O 2006 Phys. Rev. E 73 066605
[25] Ouyang S G, Hu W and Guo Q 2007 Phys. Rev. A 76 053832
[26] Greiner W 2001 Quantum Mechanics: An Introduction, 4th edn. (Berlin: Springer-Verlag) pp. 117-119
[27] Ehrenfest P 1927 Z. Phys. 45 455
[28] Agrawal G P 2007 Nonlinear Fiber Optics, 4th edn. (San Diego: Academic) pp. 41-45
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[9] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[10] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[11] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[12] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[13] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[14] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[15] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
No Suggested Reading articles found!