Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 018701    DOI: 10.1088/1674-1056/22/1/018701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Bursting synchronization in clustered neuronal networks

Yu Hai-Tao (于海涛), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐)
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
Abstract  Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intra-coupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region.
Keywords:  bursting synchronization      neuronal network      cluster      external signal  
Received:  04 February 2012      Revised:  25 July 2012      Accepted manuscript online: 
PACS:  87.19.lj (Neuronal network dynamics)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61072012, 61104032, and 61172009), the Natural Science Foundation of Tianjin Municipality, China (Grant No. 12JCZDJC21100), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 60901035 and 50907044).
Corresponding Authors:  Wang Jiang     E-mail:  jiangwang@tju.edu.cn

Cite this article: 

Yu Hai-Tao (于海涛), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐) Bursting synchronization in clustered neuronal networks 2013 Chin. Phys. B 22 018701

[1] Arenas A, Díaz-Guilera A and Pérez-Vicente C J 2006 Physica D 224 27
[2] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press) pp. 1-98
[3] Osipov G V, Kurths J and Zhou C 2007 Synchronization in Oscillatory Networks (Berlin: Springer) p. 3
[4] Gray C M, König P, Engel A K and Singer W 1989 Nature 338 334
[5] Elson R C, Selverston A I, Huerta R, Rulkov N F, Rabinovich M I and Abarbanel H D I 1998 Phys. Rev. Lett. 81 5692
[6] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1
[7] Wang R and Zhang Z 2011 IEEE Trans. Neural Netw. 22 1097
[8] Belykh I, de Lange E and Hasler M 2005 Phys. Rev. Lett. 94 188101
[9] Ivanchenko M V, Osipov G V, Shalfeev V D and Kurths J 2004 Phys. Rev. Lett. 93 134101
[10] Yu H, Wang J, Deng B, Wei X, Wong Y K, Chan W L, Tsang K M and Yu Z 2011 Chaos 21 013127
[11] Batista C A S, Batista A M, de Pontes J A C, Viana R L and Lopes S R 2007 Phys. Rev. E 76 016218
[12] Batista C A S, Batista A M, de Pontes J A C, Lopes S R and Viana R L 2009 Chaos Soliton. Fract. 41 2220
[13] Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 186
[14] Meunier D, Lambiotte R and Bullmore E T 2010 Front. Neurosci. 4 200
[15] Zamora-López G, Zhou C and Kurths J 2010 Front. Neuroinform. 4 1
[16] Hilgetag C C and Kaiser M 2004 Neuroinformatics 2 353
[17] Scannell J W, Blakemore C and Young M P 1995 J. Neurosci. 15 1463
[18] Scannell J W and Young M P 1993 Curr. Biol. 3 191
[19] Hilgetag C C, Burns G A, O'neill M A, Scannell J W and Young M P 2000 Philos. Trans. R. Soc. London, Ser. B 355 91
[20] Stam C J and Reijneveld J C 2007 Nonlin. Biomed. Phys. 1 3
[21] Watts D J and Strogatz S H 1998 Nature 393 440
[22] Sporns O, Chialvo D, Kaiser M and Hilgetag C C 2004 Trends Cogn. Sci. 8 418
[23] Bassett D S and Bullmore E T 2006 Neuroscientist 12 512
[24] Reijneveld J C, Ponten S C, Berendse H W and Stam C J 2007 Clin. Neurophysiol. 118 2317
[25] Honey C J, Kotter R, Breakspear M and Sporns O 2007 Proc. Natl. Acad. Sci. USA 104 10240
[26] van der Heuvel M P, Stam C J, Boersma M and Hulshoff Pol H E 2008 Neuroimage 43 528
[27] Wang Q Y, Duan Z S, Perc M and Chen G R 2008 Europhys. Lett. 83 50008
[28] Jiao X and Wang R 2010 Int. J. Nonlinear Mech. 45 647
[29] Liu Y, Wang R, Zhang Z and Jiao X 2010 Cogn. Neurodyn. 4 61
[30] Wang R, Zhang Z and Tee C K 2009 Appl. Math. Mech. 30 1415
[31] Wu W S and Tang G N 2012 Acta Phys. Sin. 61 070505 (in Chinese)
[32] Han F, Lu Q S, Marian W and Ji Q B 2009 Chin. Phys. B 18 482
[33] Zhang Z Z, Zeng S Y, Tang W Y, Hu J L, Zeng S W, Ning W L, Qiu Y and Wu H S 2012 Chin. Phys. B 21 108701
[34] Wang H X, Lu Q S and Shi X 2010 Chin. Phys. B 19 060509
[35] Nebojv sa V, Nikola B, Kristina T and Ines G 2012 Chin. Phys. B 21 010203
[36] Rulkov N F 2001 Phys. Rev. Lett. 86 183
[37] Rosenblum M and Pikowsky A 2004 Phys. Rev. E 70 041904
[38] Benabid A L, Pollak P, Gervason C, Hoffmann D, Gao D M, Hommel M, Perret J E and de Rougemont J 1991 Lancet 337 403
[39] Yu H, Wang J, Liu Q, Wen J, Deng B and Wei X 2011 Chaos 21 043125
[40] Rulkov N F 2002 Phys. Rev. E 65 041922
[41] Shilnikov A L and Rulkov N F 2003 Internat. J. Bifur. Chaos 13 3325
[42] Rulkov N F, Timofeev I and Bazhenov M 2004 J. Comput. Neurosci. 17 203
[43] Sun X, Lei J, Perc M, Kurths J and Chen G 2011 Chaos 21 016110
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[4] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[5] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[6] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[7] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[8] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[9] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[10] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[11] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[12] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[13] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[14] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[15] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
No Suggested Reading articles found!