Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 017801    DOI: 10.1088/1674-1056/22/1/017801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Roles of V/III ratio and mixture degree in GaN growth: CFD and MD simulation study

Zhou An (周安)a b, Xiu Xiang-Qian (修向前)b, Zhang Rong (张荣)b, Xie Zi-Li (谢自力)b, Hua Xue-Mei (华雪梅)b, Liu Bin (刘斌)b, Han Ping (韩平)b, Gu Shu-Lin (顾书林)b, Shi Yi (施毅)b, Zheng You-Dou (郑有炓)b
a School of Physics, Nanjing University, Nanjing 210093, China;
b Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  To understand the mechanism of Gallium nitride (GaN) film growth is of great importance for their potential applications. In this paper, we investigate the growth behavior of the GaN film by combining computational fluid dynamics (CFD) and molecular dynamics (MD) simulations. Both of the two simulations show that V/III mixture degree can have important impacts on the deposition behavior, and it is found that the more uniform the mixture is, the better the growth is. Besides, by using MD simulations, we illustrate the whole process of the GaN growth. Furthermore, we also find that the V/III ratio can affect the final roughness of the GaN film. When the V/III ratio is high, the surface of final GaN film is smooth. The present study provides the insights into GaN growth from the macroscopic and microscopic views, which may provide some suggestions on better experimental GaN preparation.
Keywords:  GaN growth      computational fluid dynamics      molecular dynamics  
Received:  20 April 2012      Revised:  12 July 2012      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  47.11.+j  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB301900), the National High Technology Research and Development Program of China (Grant No. 2011AA03A103), the National Nature Science Foundation of China (Grant Nos. 60990311, 60820106003, 60906025, and 60936004), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2011010, BK2010385, BK2009255, and BK2010178).
Corresponding Authors:  Xiu Xiang-Qian     E-mail:  xqxiu@nju.edu.cn

Cite this article: 

Zhou An (周安), Xiu Xiang-Qian (修向前), Zhang Rong (张荣), Xie Zi-Li (谢自力), Hua Xue-Mei (华雪梅), Liu Bin (刘斌), Han Ping (韩平), Gu Shu-Lin (顾书林), Shi Yi (施毅), Zheng You-Dou (郑有炓) Roles of V/III ratio and mixture degree in GaN growth: CFD and MD simulation study 2013 Chin. Phys. B 22 017801

[1] Nakamura S and Fasol G 1997 The Blue Laser Diode (Berlin: Springer)
[2] Hiramatsu K, Matsushima H, Shibata T, Sawaki N, Tadatomo K, Okagawa H, Ohuchi Y, Honda Y and Matsue T 1998 Mat. Res. Soc. Symp. Proc. 482 257
[3] Zheleva T, Nam O H, Grin J D, Bremser M D and Davis R F 1998 Mat. Res. Soc. Symp. Proc. 482 393
[4] Zhou X W, Xu S R, Zhang J C, Dang J Y, Lu L, Hao Y and Guo L X 2012 Chin. Phys. B 21 067803
[5] Sakai A, Sunakawa H and Usui A 1997 Appl. Phys. Lett. 71 2259
[6] Usui A 1998 Mat. Res. Soc. Symp. Proc. 482 233
[7] Molnar R J, Gortz W, Romano L T and Johnson N M 1997 J. Crystal Growth 178 147
[8] Cadoret R 1999 J. Crystal Growth 205 123
[9] Trassoudaine A, Aujol E, Disseix P, Catelluci D and Cadoret R 1999 Phys. Stat. Sol. 176 425
[10] Valcheva E, Paskova T, Abrashev M V, Paskov P P, Goldys E M, Beccard R, Heuken M and Monemar B 2001 J. Appl. Phys. 90 6011
[11] Cadoret R and Gil-Lafon E J 1997 Physique I 7 889
[12] Le L C, Zhao D G, Wu L L, De Y, Jiang D S, Zhu J J, Liu Z S, Wang H, Zhang S M, Zhang B S and Yang H 2011 Chin. Phys. B 20 127306
[13] Mitrovic B, Parekh A, Ramer J, Merai V, Armour E A, Kadinski L and Gurary A 2006 J. Crystal Growth 289 708
[14] Richter E, Hennig C and Weyers M 2005 J. Crystal Growth 277 6
[15] Ye H, Lu P F, Yu Z Y, Song Y X, Wang D L and Wang S M 2009 Nano Lett. 9 1921
[16] Liu Y M, Yu Z Y, Yang H B and Huang Y Z 2006 Acta Phys. Sin. 55 5023 (in Chinese)
[17] Fu K and Fu Y 2008 Appl. Phys. Lett. 93 101906
[18] Gong X J, Zhang J P, Xu K, Wang Z G, Yang H, Yu R and Zhan W 2011 Adv. Mater. Research 268 950
[19] Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506
[20] Chen H, Du L, Qu C L, He L, Chen W H and Sun P 2011 Chin. Phys. B 20 017201
[21] Wang K, Singh, Singh J and Pavlidis D 1994 J. Appl. Phys. 76 3502
[22] Gong X, Xua K, Wang J, Yang H, Bian L, Zhang J and Xu Z 2011 Physica B 406 36
[23] Chen Z H, Yu Z Y, Lu P F and Liu Y M 2009 Physica B 404 4211
[24] Safvi S A, Perkins N R, Horton M N, Matyi R and Kuech T F 1997 J. Crystal Growth 182 233
[25] Fu K, Fu Y, Han P, Zhang Y and Zhang R 2008 J. Appl. Phys. 103 103524
[26] Kempisty P, Lucznik B, Pastuszk B, Grzegory I, Bockowski M, Krukowski S and Porowski S 2006 J. Crystal Growth 296 31
[27] Yu K S, Zimina D V, Makarov Y N, Beaumont B, Nataf G, Gibart P, Heuken M, Ergensen H J and Krishnan A 1999 Phys. Stat. Sol. 176 439
[28] Hemmingsson C, Pozina G, Heuken M, Schineller B and Monemar B 2008 J. Crystal Growth 310 906
[29] Jiang H 2005 (MS dissertation) (Nanjing: Nanjing University) pp. 34-36 (in Chinese)
[30] Zhao C Z 2010 (PhD. dissertation) (Nanjing: Nanjing University) pp. 25-27 (in Chinese)
[31] Zhao C Z, Xiu X Q, Zhang R, Xie Z L, Liu B, Liu Z H, Yan H Y and Zheng Y D 2010 Sci. China Phys. Mech. Astron. 53 72
[32] Zhou X W, Murdick D A, Gillespie B and Wadley H N G 2006 Phys. Rev. B 73 045337
[33] Soong C Y, Chyuan C H and Tzong R Y 1998 J. Appl. Phys. 37 5823
[34] Tsai J K, Lo I, Chuang K L, Tu L W, Huang J H, Hsieh C H and Hsieh K Y 2004 J. Appl. Phys. 95 460
[35] Jeon C W, Kim S H and Kim I H 1995 Thin Solid Films 270 16
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!