Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 016501    DOI: 10.1088/1674-1056/22/1/016501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of doping, Stone–Wales, and vacancy defects on thermal conductivity of single-wall carbon nanotubes

Feng Dai-Li (冯黛丽), Feng Yan-Hui (冯妍卉), Chen Yang (陈阳), Li Wei (李威), Zhang Xin-Xin (张欣欣)
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The thermal conductivity of carbon nanotubes with certain defects (doping, Stone-Wales, and vacancy) is investigated using non-equilibrium molecular dynamics method. The defective carbon nanotubes (CNTs) are compared with perfect tubes. The influences of type and concentration of the defect, length, diameter, and chirality of the tube, and the ambient temperature are taken into consideration. It is demonstrated that defects result in a dramatic reduction of thermal conductivity. Doping and Stone-Wales (SW) defects have greater effect on armchair tubes, while vacancy affects the zigzag ones more. Thermal conductivity of the nanotubes increases, reaches a peak, and then decreases with increasing temperature. The temperature at which the thermal conductivity peak occurs is dependent on the defect type. Different from SW or vacancy tubes, doped tubes are similar to the perfect ones with a sharp peak at the same temperature. Thermal conductivity goes up when the tube length grows or diameter declines. It seems that the length of thermal conductivity convergence for SW tubes is much shorter than perfect or vacancy ones. The SW or vacancy tubes are less sensitive to the diameter change, compared with perfect ones.
Keywords:  thermal conductivity      carbon nanotubes      Stone-Wales defects      molecular dynamics  
Received:  30 May 2012      Revised:  15 June 2012      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  63.22.Gh (Nanotubes and nanowires)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50876010 and 51176011) and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0721).
Corresponding Authors:  Feng Yan-Hui     E-mail:  yhfeng@me.ustb.edu.cn

Cite this article: 

Feng Dai-Li (冯黛丽), Feng Yan-Hui (冯妍卉), Chen Yang (陈阳), Li Wei (李威), Zhang Xin-Xin (张欣欣) Effects of doping, Stone–Wales, and vacancy defects on thermal conductivity of single-wall carbon nanotubes 2013 Chin. Phys. B 22 016501

[1] Iijima S 1991 Nature 354 56
[2] Deng F, Zheng Q S, Wang L F and Nan C W 2007 Appl. Phys. Lett. 90 021914
[3] Ujereh S, Fisher T and Mudawar I 2007 Int. J. Heat Mass Transfer 50 4023
[4] Meunier V and Lambin P H 2000 Carbon 38 1729
[5] Nardelli B M, Fattebert J L, Orlikowski D, Roland C, Zhao Q and Bernholc J 2000 Carbon 38 1703
[6] Cummings A, Osman M, Srivastava D and Menon M 2004 Phys. Rev. B 70 115405
[7] Meng F Y, Ogata S, Xu D S, Shibutani Y and Shi S Q 2007 Phys. Rev. B 75 205403
[8] Bi K, Chen Y and Yang J 2006 Phys. Lett. A 350 150
[9] Che J, Cagin T and Goddard III W 2000 Nanotechnology 11 65
[10] Kondo N, Yamamoto T and Watanabe K 2006 e-J. Surf. Sci. Nanotech. 4 239
[11] Zhang G and Li B 2005 J. Chem. Phys. 123 114714
[12] Li W, Feng Y H, Zhang X X and Chen Y 2012 Acta Phys. Sin. 61 (in Chinese)
[13] Jin L, Fu H G, Xie Y and Yu H T 2012 Chin. Phys. B 21 057901
[14] Wang Y J, Wang L D, Yang M and Yan C 2011 Chin. Phys. B 20 117304
[15] Zhang L J, Hu H F, Wang Z Y, Chen N T, Xie N and Lin B 2011 Acta Phys. Sin. 60 077209 (in Chinese)
[16] Luo Y P, Tien L G, Tsai C H, Lee M H and Li F Y 2011 Chin. Phys. B 20 087303
[17] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[18] Bao W X, Zhu C C and Cui W Z 2004 Physica B 352 156
[19] Berendsen H J C, Postma J P M, Gunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684
[20] Schneider T and Stoll E 1978 Phys. Rev. B 17 1302
[21] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)
[22] Mingo N 2005 Nano Lett. 5 1221
[23] Wang J and Wang J S 2006 Appl. Phys. Lett. 88 111909
[24] Shiomi J and Maruyama S 2008 Phys. Rev. B 78 205406
[25] Maruyama S, Kojima R, Miyauchi Y, Chiashi S and Kohno M 2002 Chem. Phys. Lett. 360 229
[26] Mingo N 2005 Phys. Rev. Lett. 95 096105
[27] Yan X H, Xiao Y and Li Z M 2006 J. Appl. Phys. 99 124305
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[8] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[12] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[13] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[14] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[15] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
No Suggested Reading articles found!