Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 016101    DOI: 10.1088/1674-1056/22/1/016101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Static and dynamic properties of grafted ring polymer: molecular dynamics simulation

He Su-Zhen (何素贞)a b, Holger Merlitz (候格)a c, Su Chan-Fei (苏婵菲)a, Wu Chen-Xu (吴晨旭)a
a Department of Physics and ITPA, Xiamen University, Xiamen 361005, China;
b Department of Electronic Engineering, Putian University, Putian 351100, China;
c Leibniz-Institut fürPolymerforschung Dresden, Dresden 01069, Germany
Abstract  The static and dynamic properties of a system of end-grafted flexible ring polymer chains grafted to a flat substrate and exposed to a good solvent are studied by a molecular dynamics method. The monomers are described by a coarse-grained bead-spring model. Varying the grafting density ρ and the degree of polymerization or chain length N, we obtain the density profiles of monomers, study the structural properties of the chain (radius of gyration, bond orientational parameters, etc.), and also present the dynamic characteristics such as chain energy and bond force. Compared with linear polymer brush, the ring polymer brush exhibits different static and dynamic properties for moderate or short chain length, while it behaves like linear polymer brush in the regime of long chain length.
Keywords:  ring polymer      molecular dynamics      scaling  
Received:  18 June 2012      Revised:  02 September 2012      Accepted manuscript online: 
PACS:  61.41.+e (Polymers, elastomers, and plastics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50873083 and 10974162).
Corresponding Authors:  Wu Chen-Xu     E-mail:  cxwu@xmu.edu.cn

Cite this article: 

He Su-Zhen (何素贞), Holger Merlitz (候格), Su Chan-Fei (苏婵菲), Wu Chen-Xu (吴晨旭) Static and dynamic properties of grafted ring polymer: molecular dynamics simulation 2013 Chin. Phys. B 22 016101

[1] Netz R R and Schick M 1998 Macromlecules. 31 5105
[2] Alexander S 1977 J. Phys. 38 977
[3] de Gennes P G 1980 Macromolecules. 13 1069
[4] Semenov A N 1985 Sov. Phys. JETP 61 733
[5] Milner S T, Witten T A and Cates M 1988 Macromolecules. 21 2610
[6] Wijmans C M, Scheutjens J M H M and Zhulina E B 1992 25 2657
[7] Amoskov V M and Pryamitsyn V A 1994 J. Chem. Soc. Faraday Trans. 90 889
[8] Shim D F K and Cates M E 1989 J. Phys. 50 3535
[9] Borisov O V, Leermakers F A M, Fleer G J and Zhulina E B 2001 J. Chem. Phys. 114 7700
[10] Biesheuvel P M, de Vos W M and Amoskov V M 2008 Macromolecules. 41 6254
[11] Matsen M W 2004 J. Chem. Phys. 121 1938
[12] Lai P Y and Halperin A 1991 Macromolecules. 24 4981
[13] He S Z, Merlitz H, Chen L, Sommer J U and Wu C X 2010 Macromolecules. 43 7845
[14] Chen L, Merlitz H, He S Z, Sommer J U and Wu C X 2011 Macromolecules. 44 3109
[15] Zhang L X and Shen Y 2008 Chin. Phys. B. 17 1480
[16] Hur K, Winkler R G and Yoon D Y 2006 Macromolecules. 39 3975
[17] Klein A 1990 Macromolecules. 23 2984
[18] Di Marzio E A 1993 Macromolecules. 26 4613
[19] Stratouras G K and Kosmas M K 1991 Macromolecules. 24 6754
[20] Plimpton S J 1995 J. Comput. Phys. 117 1
[21] Kremer K 1990 J. Chem. Phys. 92 5057
[22] Halperin A, Tirrell M and Lodge T 1992 Adv. Polym. Sci. 100 31
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[8] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[9] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[10] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[11] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[12] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[13] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
No Suggested Reading articles found!