Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 014701    DOI: 10.1088/1674-1056/22/1/014701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell

Li Zhan-Chang (李战厂)a, Jia Xiao-Peng (贾晓鹏)a, Huang Guo-Feng (黄国锋)b, Hu Mei-Hua (胡美华)a, Li Yong (李勇)a, Yan Bing-Min (颜丙敏)a, Ma Hong-An (马红安)a
a State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
b School of Physics and Electronic Engineering, Chifeng College, Chifeng 024000, China
Abstract  We investigate the temperature fields varying in growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by the temperature gradient method (TGM) at high pressure and high temperature (HPHT). We employ both the finite element method (FEM) and in situ experiments. Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth. These results are in good agreement with our experimental data, which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell. The FEM simulation will be useful to grow larger high-quality diamond crystals by TGM. Furthermore, this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal.
Keywords:  temperature field      finite element method      single crystal growth diamond  
Received:  01 June 2012      Revised:  15 June 2012      Accepted manuscript online: 
PACS:  47.11.Fg (Finite element methods)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071074, 51172089, and 51171070) and the Program for New Century Excellent Talents in University of Ministry of Education of China.
Corresponding Authors:  Ma Hong-An     E-mail:  maha@jlu.edu.cn

Cite this article: 

Li Zhan-Chang (李战厂), Jia Xiao-Peng (贾晓鹏), Huang Guo-Feng (黄国锋), Hu Mei-Hua (胡美华), Li Yong (李勇), Yan Bing-Min (颜丙敏), Ma Hong-An (马红安) FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell 2013 Chin. Phys. B 22 014701

[1] Strong H M and Chrenko R M 1971 J. Phys. Chem. 75 1838
[2] Wentrof R H 1971 J. Phys. Chem. 75 1833
[3] Li S S Ma H A, Li X L, Su C, Jia X P, Ma H A, Huang G F and Li Y 2011 Chin. Phys. B 20 028103
[4] Yoder M N 1991 Diamond and Diamond-Like Films and Coatings (New York: Plenum Press)
[5] Isoya J, Kanda H and Akaishi M 1997 Diamond and Related Materials 6 356
[6] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F and Ma H A 2012 Chin. Phys. B 21 058101
[7] Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M and Ma H A 2011 Chin. Phys. B 20 078103
[8] Huang G F, Jia X P, Li S S, Zhang Y F, Li Y, Zhao M and Ma H A 2010 Chin. Phys. B 19 118101
[9] Huang G F 2008 Growth of Type Ib Diamond Crystal with Multi-Seed Under High Temperature and High Pressure by Temperature Gradient (MS. thesis) (Changchun: Jilin University) (in Chinese)
[10] Li R, Ma H A and Hang Q G 2008 Journal of Jilin University (Engineering and Technology Edition) 38 535 (in Chinese)
[11] Zhai F G, Sun T and Ren W B 2009 Chin. Soc. Elec. Eng. 29 118 (in Chinese)
[12] ASM Handbook 1990 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (vol. 2) (ASM International)
[13] Ma Q F 1986 Practical Handbook of Thermal Physical Properties (Beijing: China Agricultural Machinery Press) (in Chinese)
[14] Nazare M H and Neves A J 2001 Properties, growth, and Applications of Diamond (EMIS Datareview series No. 26) (INSPEC: Institution of Electrical Engineers)
[15] Emelyanov A E 1994 High Temperatures-High Pressures 15 663
[16] Zhang J R and Zhao T Y 1987 Handbook of Thermo-Physical Parameter for Usual Used Material in Engineering (Beijing: New Times Press) (in Chinese)
[17] Hicks T L and Secco R 1997 Can. J. Earth Sci. 34 875
[18] Dawson D K and Creamer R H 1965 Br. J. Appl. Phys. 16 1643
[19] Lide D R 1995 Handbook of Chemistry and of Physics (75th edn.) (London: The Chemical Rubber Co.)
[20] Rothman M F 1988 High-Temperature Property Data: Ferrous Alloys (ASM International, Materials Park)
[21] Pierson H O 1994 Handbook of Carbon, Graphite, Diamond, and Fullerenes (Park Ridge: Noyes Publications)
[22] Nishi T, Shibata H, Ohta H and Waseda Y 2003 Met. Mat. Trans. A 34A 2801
[23] Taylor R E, Davis F E and Powell R W 1969 High Temperatures-High Pressures 1 663
[24] Kingery W D, Francl J, Coble R L and Vasilos T 1954 J. Am Ceram. Soc. 37 107
[25] He S A, Li J L and Cheng X R 1977 Acta Phys. Sin. 2 100 (in Chinese)
[26] Pierson H O 1999 Handbook of Chemical Vapor Deposition: Principles, Technology and Applications (2nd edn.) (Norwich: Noyes/William Andrew)
[27] Zang C Y, Ma H A, Li R and Li S S 2008 Superhard Mater. Eng. 20 11 (in Chinese)
[28] Strong H M and Hanneman R E 1967 J. Phys. Chem. 46 3668
[29] Sumiya H Toda N and Satoh S 2002 J. Cryst. Growth 337 1281
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[4] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[5] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[6] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[7] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[8] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[9] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[10] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[11] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[12] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[13] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[14] Temperature rise induced by an annular focused transducer with a wide aperture angle in multi-layer tissue
Meng Qi(戚萌), Jiehui Liu(刘杰惠), Yiwei Mao(毛一葳), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2018, 27(1): 014301.
[15] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
No Suggested Reading articles found!