Special Issue:
TOPICAL REVIEW — Low-dimensional nanostructures and devices
|
TOPICAL REVIEW—Low-dimensional nanostructures and devices |
Prev
Next
|
|
|
Unique electrical properties of nanostructured diamond cones |
Gu Chang-Zhi (顾长志)a, Wang Qiang (王强)b, Li Jun-Jie (李俊杰)a, Xia Ke (夏钶)c |
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Applied Physics, Harbin Institute of Technology at Weihai, Weihai 264209, China;
c Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract The preparation and electrical properties of diamond nanocones are reviewed, including a maskless etching process and mechanism of large-area diamond conical nanostructure arrays using a hot filament chemical vapor deposition (HFCVD) system with negatively biased substrates, and the field electron emission, gas sensing, and quantum transport properties of a diamond nanocone array or an individual diamond nanocone. Optimal cone aspect ratio and array density are investigated, along with the relationships between the cone morphologies and experimental parameters, such as the CH4/H2 ratio of the etching gas, the bias current, and the gas pressure. The reviewed experiments demonstrate the possibility of using nanostructured diamond cones as a display device element, a point electron emission source, a gas sensor or a quantum device.
|
Received: 02 August 2013
Accepted manuscript online:
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
73.63.Rt
|
(Nanoscale contacts)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272278, 11174362, and 91023041), the National Basic Research Program of China (Grant No. 2009CB930502), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W02). |
Corresponding Authors:
Gu Chang-Zhi, Li Jun-Jie
E-mail: czgu@iphy.ac.cn; jjli@iphy.ac.cn
|
Cite this article:
Gu Chang-Zhi (顾长志), Wang Qiang (王强), Li Jun-Jie (李俊杰), Xia Ke (夏钶) Unique electrical properties of nanostructured diamond cones 2013 Chin. Phys. B 22 098107
|
[1] |
Iijima S 1991 Nature 354 56
|
[2] |
Rangelow I W 2001 J. Vac. Sci. Technol. B 19 916
|
[3] |
Huq S E, Kent B J, Stevens R, Lawes R A, Xu N S and She J C 2001 J. Vac. Sci. Technol. B 19 988
|
[4] |
Wong W K 2002 Appl. Phys. Lett. 80 877
|
[5] |
Zhu J 2009 Nano Lett. 9 279
|
[6] |
Lu C, Li Y L, Tian S B, LiWX, Li J J and Gu C Z 2011 Microelectron. Eng. 88 2319
|
[7] |
Wang Y 2010 Nano Res. 3 520
|
[8] |
Sandhu G S and Chu W K 1989 Appl. Phys. Lett. 55 437
|
[9] |
Ramesham R and Loo B H 1992 J. Electrochem. Soc. 139 1988
|
[10] |
Wang Z L, Gu C Z, Li J J and Cui Z 2005 Microelectron. Eng. 78 353
|
[11] |
Baik E S, Baik Y J and Jeon D 1999 Diamond Relat. Mater. 8 2169
|
[12] |
Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I and Lee S T 2003 Appl. Phys. Lett. 82 2622
|
[13] |
Wang Q, Gu C Z, Xu Z, Li J J, Wang Z L, Bai X D and Cui Z 2006 J. Appl. Phys. 100 034312
|
[14] |
Ternyak O, Cimmino A A, Prawer S and Hoffman A 2005 Diamond Relat. Mater. 14 272
|
[15] |
Cui Z 2006 Micro-nanofabrication Technologies and Applications (Springer-Verlag: Berlin and Heidelberg)
|
[16] |
Wang Q, Li J J, Li Y L, Wang Z L, Gu C Z and Cui Z 2007 J. Phys. Chem. C 111 7058
|
[17] |
Fox N A, Wang W N, Davis T J, Steeds J W and May P W 1997 Appl. Phys. Lett. 71 2337
|
[18] |
Liu N, Ma Z, Chu X, Hu T, Xue Z, Jiang X and Pang S 1994 J. Vac. Sci. Technol. B 12 1712
|
[19] |
Geis M W, Efremow N N, Krohn K E, Twichell J C, Lyszczarz T M, Kalish R, Greer J A and Tabai M D 1998 Nature 393 431
|
[20] |
Nilsson L, Groening O, Emmenegger C, Kuettel O, Schaller E, Schlapbach L, Kind H, Bonard J M and Kern K 2000 Appl. Phys. Lett. 76 2071
|
[21] |
Suh J S, Jeong K S, Lee J S and Han I 2002 Appl. Phys. Lett. 80 2392
|
[22] |
Jo S H, Tu Y, Huang Z P, Carnahan D L, Wang D Z and Ren Z F 2003 Appl. Phys. Lett. 82 3520
|
[23] |
Nisson L, Groening O, Emmenegger C, Kuettel O, Schaller E, Schlapbach L, Kind H, Bonard J M and Kern K S 2000 Appl. Phys. Lett. 76 2071
|
[24] |
Pan L H, Peridier V J and Sullivan T E 2005 Phys. Rev. B 49 57
|
[25] |
Semet V, Binh V T, Vincent P, Guillot D, Teo K B K, Chhowalla M, Amaratunga G A J, Milne W I, Legagneux P and Pribat D 2002 Appl. Phys. Lett. 81 343
|
[26] |
Karabutov A V, Frolov V D, Simakin A V and Shafeev G A 2003 J. Vac. Sci. Technol. B 21 449
|
[27] |
Li H, Li J J and Gu C Z 2005 Carbon 43 849
|
[28] |
Wang Q, Wang Z L, Li J J, Huang Y, Li Y L, Gu C Z and Cui Z 2006 Appl. Phys. Lett. 89 063105
|
[29] |
Hsieh C T and Chen J M 2003 Appl. Phys. Lett. 83 3383
|
[30] |
Edgcombe C J and Valdré U 2002 Philos. Mag. B 82 987
|
[31] |
Wisitsora A, KangWP, Davidson J L and Kerns D V 1997 Appl. Phys. Lett. 71 3394
|
[32] |
Gi R S, Ishikawa T, Tanaka S, Kimura T, Akiba Y and Iida M 1997 Jpn. J. Appl. Phys. 36 2057
|
[33] |
Song K S, Sakai T, Kanazawa H, Araki Y, Umezawa H, Tachiki M and Kawarada H 2003 Biosens. Bioelectron. 19 137
|
[34] |
Metzger L, Fischer F and Mokwa W 2007 Sens. Actuators A 133 259
|
[35] |
Wang Q, Qu S L, Fu S Y, Liu W J, Li J J and Gu C Z 2007 J. Appl. Phys. 102 103714
|
[36] |
Denisenko A, Aleksov A and Kohn E 2001 Diamond Relat. Mater. 10 667
|
[37] |
Maier F, Riedel M, Mantel B, Ristein J and Ley L 2000 Phys. Rev. Lett. 85 3472
|
[38] |
Gan L, Baskin E, Saguy C and Kalish R 2006 Phys. Rev. Lett. 96 196808
|
[39] |
vanWeeks B J, Kouwenhoven L P, Houten H V, Beenakker CW, Mooij J E, Foxon C T and Harris J J 1998 Phys. Rev. B 38 3625
|
[40] |
Tivarus C, Pelz J P, Hudait M K and Ringel S A 2005 Phys. Rev. Lett. 94 206803
|
[41] |
Maier F, Ristein J and Ley L 2001 Phys. Rev. B 64 165411
|
[42] |
Dagata J and Tseng W 1993 Appl. Phys. Lett. 62 591
|
[43] |
Ferry D K and Goodnick SM1997 Transport in Nanostructures (Cambridge: Cambridge University Press)
|
[44] |
Collins A T 1994 Properties and Growth of Diamond (London: INSPEC)
|
[45] |
Svistunov V M, Khachaturov A I and Chemyak O I 1998 Low Temperature Phys. 24 501
|
[46] |
Litovchenko V G and Kryuchenko Y V 1993 J. Vac. Sci. Technol. B 11 362
|
[47] |
Kumar V and Dahlke W 1977 Solid State Electron. 20 143
|
[48] |
Cui J, Ristein J and Ley L 1999 Phys. Rev. B 60 16135
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|