Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094214    DOI: 10.1088/1674-1056/21/9/094214

Effects of temperature and input energy on quasi-three-level emission cross section of Nd3+:YAG pumped by flashlamp

Seyed Ebrahim Pourmand, Noriah Bidin, Hazri Bakhtiar
Advanced Photonic Science Institute, Faculty of Science, University Teknologi Malaysia, Skudai 81300, Malaysia
Abstract  The influence of temperature and input energy on fluorescence emission cross section of Nd3+:YAG crystal is studied. The stimulated emission cross sections of quasi-three-level systems are determined in a temperature range from -30 to 60 ℃ and an input energy range from 18 to 75 J. The cross section is found to decrease with the temperature and the input energy is increased. This is attributed to the thermal broadening mechanism of the emission line. This study is relevant for the development of laser design.
Keywords:  emission cross section      Nd:YAG laser      flashlamp      fluorescence  
Received:  04 February 2012      Revised:  06 March 2012      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the Higher Education of Malaysia (Grant No. 7126.00H10) and the International Development Fund.
Corresponding Authors:  Noriah Bidin     E-mail:

Cite this article: 

Seyed Ebrahim Pourmand, Noriah Bidin, Hazri Bakhtiar Effects of temperature and input energy on quasi-three-level emission cross section of Nd3+:YAG pumped by flashlamp 2012 Chin. Phys. B 21 094214

[1] Wang C Q, Chow Y T, Yuan D R, Xu D, Zhang G H, Liu M G, Lu J R, Shao Z S and Jiang M H 1999 Opt. Commun. 165 231
[2] Dimov D, Peik E and Walther H 1991 Appl. Phys. B 53 6
[3] Eichhorn M 2008 Appl. Phys. B 93 269
[4] Zhao S, Rapaport A, Dong J, Chen B, Deng P and Bass M 2005 Opt. Mater. 27 1329
[5] Zhaoa S, Rapaport A, Dong J, Chen B, Deng P and Bass M 2006 Opt. Laser Technol. 38 645
[6] Rapaport A, Zhao S, Xiao G, Howard A and Bass M 2002 J. Appl. Phys. 41 7052
[7] Singh S, Smith R G and Van Uiter L G 1974 Phys. Rev. B 10 2566
[8] Kaminskii A A 1990 Laser Crystals (2nd edn.) (New York: Springer Series in Optical Science)
[9] Kushida T, Marcos H M and Geusic J E 1968 Phys. Rev. 167 289
[10] Powel R C 1998 Physics of Solid Laser Materials (New York: AIP Press/Springer)
[11] Dong J, Raport A, Bass M, Szipocs F and Ueda K I 2005 Phys. Stat. Sol. (a) 13 2565
[12] Zainal R, Tamuri A R, Daud Y M and Bidin N 2010 American Institute of Physics Proceedings CP 1250 133
[13] Koechner W 2006 Solid-State Laser Engineering (6th edn.) (New York: Springer) p. 25
[14] Krupke W F, Shin M D, Marion J E, Carid J A and Stokowski S E 1986 J. Opt. Soc. Am. B 3 102
[15] Sardar D K, Yow R M, Gruber J B, Allik T H and Zandi B 2006 J. Lumin. 116 145
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[3] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[4] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[5] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[6] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[7] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[8] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[9] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[10] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[11] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[12] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[13] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[14] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[15] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
No Suggested Reading articles found!