|
|
Effects of reagent's rotational and vibrational excitations on reaction O(3P) + H2(ν = 0, 3, j = 0, 3, 5, 7, 9, 12, 15) → OH + H |
Xu Zeng-Hui (许增慧), Zong Fu-Jian (宗福建), Han Bo-Ran (韩博然), Dong Shao-Hua (董少华), Liu Jian-Qiang (刘建强), Ji Feng (计峰) |
School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract To investigate the effect of reagent's rotational and vibrational excitations on the stereo-dynamics of reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT) method on the 3A" and 3A′ potential energy surfaces (PESs). The reaction cross section is considered as the only scalar property in this work at four different collision energies. Furthermore the vector properties including two polarization-dependent differential cross sections (PDDCSs), the angular distributions of product' rotational momentum are discussed at one fixed collision energy. Effects of reagents' rotational excitation on the reaction do exist regularly.
|
Received: 08 January 2012
Revised: 20 March 2012
Accepted manuscript online:
|
PACS:
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
34.20.-b
|
(Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972082 and 51072101), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090131120077), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011EMM019). |
Corresponding Authors:
Zong Fu-Jian
E-mail: fjzong@sdu.edu.cn
|
Cite this article:
Xu Zeng-Hui (许增慧), Zong Fu-Jian (宗福建), Han Bo-Ran (韩博然), Dong Shao-Hua (董少华), Liu Jian-Qiang (刘建强), Ji Feng (计峰) Effects of reagent's rotational and vibrational excitations on reaction O(3P) + H2(ν = 0, 3, j = 0, 3, 5, 7, 9, 12, 15) → OH + H 2012 Chin. Phys. B 21 093103
|
[1] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[2] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[3] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[4] |
Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407
|
[5] |
Martinez R, Lucas J M, Giménez X, Aguilar A and González M 2006 J. Chem. Phys. 124 144301
|
[6] |
Aoiz F J, Areas L B and Herrerob V J 1998 J. Chem. Soc., Faraday Trans. 94 2483
|
[7] |
Braunstein M, Golden S A, Maiti B and Schatz G C 2004 J. Chem. Phys. 120 4316
|
[8] |
Chu T S, Zhang X and Han K L 2005 J. Chem. Phys. 122 214301
|
[9] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[10] |
Weck P F, Balakrishnan N, Brandao J, Rosa C and Wang W 2006 J. Chem. Phys. 124 074308
|
[11] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
|
[12] |
Wang W L, Rosa C and Brandao J 2006 Chem. Phys. Lett. 418 250
|
[13] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[14] |
Chu T S and Han K L 2005 J. Phys. Chem. A 109 2050
|
[15] |
Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
|
[16] |
Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
|
[17] |
Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
|
[18] |
Li B and Han K L 2009 J. Phys. Chem. A 113 10189
|
[19] |
Chen T Y, Zhang W P, Wang X Q and Zhao G J 2009 Chem. Phys. 365 158
|
[20] |
Rogers S, Wang D, Kuppermann A and Walch S 2000 J. Phys. Chem. A 104 2308
|
[21] |
Wu V W 2010 Chin. J. Chem. Phys. 23 149
|
[22] |
Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
|
[23] |
Liu S L and Shi Y 2011 Chem. Phys. Lett. 501 197
|
[24] |
Xu Z H and Zong F J 2010 J. Mol. Struc.-Theochem 960 22
|
[25] |
Xu Z H and Zong F J 2011 Chin. Phys. B 20 063104
|
[26] |
Cao J W, Zhang Z J, Zhang C F, Liu K, Wang M H and Bian W S 2009 Proc. Natl. Acad. Sci. 106 13180
|
[27] |
Wang M H, Sun X M and Bian W S 2008 J. Chem. Phys. 129 084309
|
[28] |
Graff M M and Dalgarno A 1987 Astrophys. J. 317 432
|
[29] |
Gray S K, Goldfield E M, Schatz G C and Balint-Kurti G G 1999 Phys. Chem. Chem. Phys. 1 1141
|
[30] |
Halvick P, Stoecklin T, Larrégaray P and Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582
|
[31] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[32] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[33] |
Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
|
[34] |
Kuang D and Miao X Y 2010 J. Mol. Struc.-Theochem 952 109
|
[35] |
Ramachandran B, Senekowitsch J and Wyatt R E 1997 Chem. Phys. Lett. 270 387
|
[36] |
Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
|
[37] |
Zhu Z Y, Zhu Z H, Zhang L, Li P G, Tang W H and Zheng Y Y 2011 Acta Phys. Sin. 60 123102 (in Chinese)
|
[38] |
Yu Y J, Xu Q and Xu X W 2011 Acta Phys. Sin. 60 123402 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|