Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 093104    DOI: 10.1088/1674-1056/21/9/093104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study

Shao Yu-Fei (邵宇飞)a, Yang Xin (杨鑫)a, Zhao Xing (赵星)b, Wang Shao-Qing (王绍青)c
a Institute of Applied Physics and Technology, Department of General Studies, Liaoning Technical University, Huludao 125105, China;
b Department of Mathematics and Physics, Liaoning University of Technology, Jinzhou 121001, China;
c Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  The effects of stacking fault energy, unstable stacking fault energy and unstable twinning fault energy on the fracture behavior of nanocrystalline Ni are studied via the quasicontinuum simulations. Two semi-empirical potentials for Ni are used to vary the values of these generalized planar fault energies. When the above three energies are reduced, a brittle-to-ductile transition of the fracture behavior is observed. In the model with higher generalized planar fault energies, a nanocrack proceeds along a grain boundary, while in the model with lower energies, the tip of the nanocrack becomes blunt. A greater twinning tendency is also observed in the more ductile model. These results indicate that the fracture toughness of nanocrystalline face-centered-cubic metals and alloys might be efficiently improved by controlling the generalized planar fault energies.
Keywords:  atomistic simulations      nanocrystalline materials      fracture      grain boundaries  
Received:  23 December 2011      Revised:  12 March 2012      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  61.72.Mm (Grain and twin boundaries)  
  62.20.mt (Cracks)  
  61.82.Rx (Nanocrystalline materials)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403).
Corresponding Authors:  Zhao Xing     E-mail:  yfshao@alum.imr.ac.cn; zhao-heng-xing@126.com

Cite this article: 

Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青) Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study 2012 Chin. Phys. B 21 093104

[1] Meyers M A, Mishra A and Benson D J 2006 Prog. Mater. Sci. 51 427
[2] Dao M, Lu L, Asaro R J, Hosson J T M and Ma E 2007 Acta Mater. 55 4041
[3] Ma W, Zhu W J, Zhang Y L and Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese)
[4] Shao C W, Wang Z H, Li Y N, Zhao Q and Zhang L 2011 Acta Phys. Sin. 60 083602 (in Chinese)
[5] Song C F, Fan Q N, Li W, Liu Y L and Zhang L 2011 Acta Phys. Sin. 60 063104 (in Chinese)
[6] Wang Z G, Wu L, Zhang Y and Wen Y H 2011 Acta Phys. Sin. 60 096105 (in Chinese)
[7] Ma E 2003 Scripta Mater. 49 663
[8] Ma E 2006 JOM 58 49
[9] Zhu Y T, Narayan J, Hirth J P, Mahajan S, Wu X L and Liao X Z 2009 Acta Mater. 57 3763
[10] Wu X L and Zhu Y T 2008 Phys. Rev. Lett. 101 025503
[11] Lu L 2008 J. Mater. Sci. Technol. 24 473
[12] Hai S and Tadmor E B 2003 Acta Mater. 51 117
[13] Yamakov V, Wolf D, Phillpot S R and Gleiter H 2002 Acta Mater. 50 5005
[14] Lu K, Lu L and Suresh S 2009 Science 324 349
[15] Zhao Y H, Zhu Y T, Liao X Z, Horita Z and Langdon T G 2006 Appl. Phys. Lett. 89 121906
[16] Sun P L, Zhao Y H, Cooley J C, Kassner M E, Horita Z and Langdon T G 2009 Mater. Sci. Eng. A 525 83
[17] Wang Z W, Wang Y B, Liao X Z, Zhao Y H, Lavernia E J, Zhu Y T, Horita Z and Langdon T G 2009 Scripta Mater. 60 52
[18] Swygenhoven H V, Derlet P M and Froseth A G 2004 Nature Mater. 3 399
[19] Jin J, Shevlin S A and Guo Z X 2008 Acta Mater. 56 4358
[20] Zimmerman J A, Gao H J and Abraham F F 2000 Modeling Simul. Mater. Sci. Eng. 8 103
[21] Tadmor E B, Phillips R and Ortiz M 1996 Langmuir 12 4529
[22] Tadmor E B, Ortiz M and Phillips R 1996 Philos. Mag. A 73 1529
[23] Wang H T, Qin Z D, Ni Y S and Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese)
[24] Shao Y F and Wang S Q 2010 Acta Phys. Sin. 59 7258 (in Chinese)
[25] Lu H B, Li J W, Ni Y S, Mei J F and Wang H S 2011 Acta Phys. Sin. 60 106101 (in Chinese)
[26] Mei J F, Li J W, Ni Y S and Wang H T 2011 Acta Phys. Sin. 60 066104 (in Chinese)
[27] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[28] Miller R E and Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203
[29] Voronoi G Z 1908 J. Reine Angew. Math. 134 199
[30] Sih G C and Liebowitz H 1968 Fracture: An Advanced Treatise, (NewYork: Academic Press) pp. 67-190
[31] Li J 2003 Modeling Simul. Mater. Sci. Eng. 11 173
[32] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[33] Cormier J, Rickman J M and Delph T J 2001 J. Appl. Phys. 89 99
[34] Voter A F and Chen S P 1987 Mater. Res. Soc. Symp. Proc. 82 175
[35] Mishin Y, Farkas D, Mehl M J and Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393
[36] Farkas D, Petegem S V, Derlet P M and Swygenhoven H V 2005 Acta Mater. 53 3115
[37] Kumar K S, Suresh S, Chisholm M F, Horton J A and Wang P 2003 Acta Mater. 51 387
[38] Frenkel J 1926 Z. Phys. 37 572
[39] Mackenzie J K 1949 A Theroy of Sintering and the Theoretical Yield Strength of Solids (PhD Thesis) (Bristol: Bristol University)
[40] Rice J R 1992 J. Mech. Phys. Solids 40 239
[41] Tadmor E B and Hai S 2003 J. Mech. Phys. Solids 51 765
[42] Bernstein N and Tadmor E B 2004 Phys. Rev. B 69 094116
[43] Siegel D J 2005 Appl. Phys. Lett. 87 121901
[44] Zhou H F, Qu S X and Yang W 2010 Modeling Simul. Mater. Sci. Eng. 18 065002
[45] Yamakov V, Saether E and Glaessgen E H 2008 J. Mater. Sci. 43 7488
[46] Kart H H, Uludogan M and Cagin T 2009 Comput. Mater. Sci. 44 1236
[47] Miller R E, Tadmor E B, Phillips R and Ortiz M 1998 Modeling Simul. Mater. Sci. Eng. 6 607
[48] Hasnaoui A, Swygenhoven H V and Derlet P M 2003 Science 300 1550
[1] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[2] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[3] Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate
Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇). Chin. Phys. B, 2020, 29(12): 128101.
[4] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[5] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[6] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[7] Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires
Hongxian Xie(谢红献), Tao Yu(于涛), Wei Fang(方伟), Fuxing Yin(殷福星), Dil Faraz Khan. Chin. Phys. B, 2016, 25(12): 126201.
[8] Orientation-dependent morphological stability of grain boundary groove
Wang Li-Lin (王理林), Lin Xin (林鑫), Wang Zhi-Jun (王志军), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2014, 23(12): 124702.
[9] Tensile properties of phase interfaces in Mg–Li alloy:A first principles study
Zhang Cai-Li (张彩丽), Han Pei-De (韩培德), Wang Xiao-Hong (王小宏), Zhang Zhu-Xia (张竹霞), Wang Li-Ping (王丽平), Xu Hui-Xia (许慧侠). Chin. Phys. B, 2013, 22(12): 126802.
[10] A new modulated structure in α-Fe2O3 nanowires
Cai Rong-Sheng (蔡鎔声), Shang Lei (商蕾), Liu Xue-Hua (刘雪华), Wang Yi-Qian (王乙潜), Yuan Lu (袁露), Zhou Guang-Wen (周光文). Chin. Phys. B, 2013, 22(10): 107401.
[11] Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青 ). Chin. Phys. B, 2012, 21(8): 083101.
[12] The synthesis and exchange bias effect of monodisperse NiO nanocrystals
Duan Han-Ning(段寒凝), Yuan Song-Liu(袁松柳), Zheng Xian-Feng(郑先锋), and Tian Zhao-Ming(田召明) . Chin. Phys. B, 2012, 21(7): 078101.
[13] Structural and electrical properties of single crystalline and bi-crystalline ZnO thin films grown by molecular beam epitaxy
Lu Zhong-Lin(路忠林), Zou Wen-Qin(邹文琴), Xu Ming-Xiang(徐明祥), and Zhang Feng-Ming(张凤鸣). Chin. Phys. B, 2010, 19(7): 076101.
[14] A numerical analytic method for electromagnetic radiation accompanying with fracture of rocks
Chen Zhen(陈震), Huang Ka-Ma(黄卡玛). Chin. Phys. B, 2010, 19(10): 105201.
[15] Grain size reduction of copper subjected to repetitive uniaxial compression combined with accumulative fold
Zou Yong-Tao(邹永涛), Lei Li(雷力), Wang Zhao(王赵), Wang Jiang-Hua(王江华), Zhang Wei(张伟), and He Duan-Wei(贺端威). Chin. Phys. B, 2009, 18(2): 815-820.
No Suggested Reading articles found!