|
|
Topological aspect of vortex lines in two-dimensional Gross–Pitaevskii theory |
Zhao Li (赵力)a, Yang Jie (杨捷)a, Xie Qun-Ying (谢群英)a b, Tian Miao (田苗)c |
a Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China;
b School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China;
c School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China |
|
|
Abstract Using the φ-mapping topological theory, we study the topological structure of vortex lines in a two-dimensional generalized Gross-Pitaevskii theory in (3+1)-dimensional space-time. We obtain the reduced dynamic equation in the framework of two-dimensional Gross-Pitaevskii theory, from which a conserved dynamic quantity is derived on the stable vortex lines. Such equations can also be used to discuss Bose-Einstein condensates in heterogeneous and highly nonlinear systems. We obtain an exact dynamic equation with a topological term, which is ignored in traditional hydrodynamic equations. The explicit expression of vorticity as a function of the order parameter is derived, where the δ function indicates that the vortices can only be generated from the zero points of Φ and are quantized in terms of the Hopf indices and Brouwer degrees. The φ-mapping topological current theory also provides a reasonable way to study the bifurcation theory of vortex lines in the two-dimensional Gross-Pitaevskii theory.
|
Received: 25 August 2011
Revised: 14 April 2012
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
47.32.C-
|
(Vortex dynamics)
|
|
02.40.Pc
|
(General topology)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10905026 and 10905027) and the Program of Science and Technology Development of Lanzhou, China (Grant No. 2010-1-129). |
Corresponding Authors:
Zhao Li
E-mail: lizhao@lzu.edu.cn
|
Cite this article:
Zhao Li (赵力), Yang Jie (杨捷), Xie Qun-Ying (谢群英), Tian Miao (田苗) Topological aspect of vortex lines in two-dimensional Gross–Pitaevskii theory 2012 Chin. Phys. B 21 090304
|
[1] |
Zhang C W, Dudarev A M and Qian N 2006 Phys. Rev. Lett. 97 040401
|
[2] |
Kraemer M, Menotti C, Pitaevskii L and Stringari S 2003 Eur. Phys. J. D 27 247
|
[3] |
Heimsoth M and Bonitz M 2010 Physica E 42 420
|
[4] |
Buchanan M 2009 Nature Phys. 5 619
|
[5] |
Terno D R 2005 Int. J. Mod. Phys. D 14 2307
|
[6] |
Gambini R and Pullin J 2007 Found. Phys. 37 1074
|
[7] |
Maccone L 2009 Phys. Rev. Lett. 103 080401
|
[8] |
Strominger A and Thorlacius L 1994 Phys. Rev. D 50 5177
|
[9] |
Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2006 Phys. Rev. Lett. 97 053002
|
[10] |
Son S and Fisch N J 2005 Phys. Rev. Lett. 95 225002
|
[11] |
Higuchi A and Martin G D R 2006 Phys. Rev. D 74 125002
|
[12] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[13] |
Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
|
[14] |
Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
|
[15] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[16] |
Törnkvist O and Schröder E 1997 Phys. Rev. Lett. 78 1908
|
[17] |
Dodd R J, Burnett K, Edwards M and Clark C W 1997 Phys. Rev. A 56 587
|
[18] |
Chen K, You Y X, Hu T Q, Zhu M H and Wang X Q 2011 Acta Phys. Sin. 60 024702 (in Chinese)
|
[19] |
Feynman R P 1955 Progress in Low Temperature Physics (Amsterdam: North-Holland)
|
[20] |
Donnelly R J 1991 Quantized Vortices in Helium II (Cambridge: Cambridge University Press)
|
[21] |
Duan Y S, Zhao L and Zhang X H 2006 Phys. Lett. A 360 183
|
[22] |
Sedrakyan D M and Shakhabasyan K M 1991 Usp. Fiz. Nauk 161 3
|
[23] |
Fowler G N, Raha S and Weiner R M 1985 Phys. Rev. C 31 1515
|
[24] |
Vollhardt D and Wölfle P 1990 The Superfluid Phases of Helium 3 (London: Taylor and Francis)
|
[25] |
Ho T L 1998 Phys. Rev. Lett. 81 742
|
[26] |
Garcia-Ripoll J J, Cirac J I, Anglin J, Perez-Garcia V M and Zoller P 2000 Phys. Rev. A 61 053609
|
[27] |
Pitaevskii L P 1961 Sov. Phys. JEPT 13 451
|
[28] |
Gross E P 1961 Nuovo Cimento 20 454
|
[29] |
Kolomeisky E B, Newman T J, Straley J P and Qi X 2000 Phys. Rev. Lett. 85 1146
|
[30] |
Wu X Y, Zhang B J, Liu X J, Xiao L, Wu Y H, Wang Y, Wang Q C and Cheng S 2010 Int. J. Theor. Phys. 49 2437
|
[31] |
Davidson M 1979 Physica A 96 465
|
[32] |
Duan Y S 1984 The Structure of the Topological Current (Report No. SlAC-PUB-3301)
|
[33] |
Duan Y S and Ge M L 1979 Sci. Sin. 11 1072
|
[34] |
Bohm D 1952 Phys. Rev. 85 166
|
[35] |
Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
|
[36] |
Kevrekidis P G, Theocharis G, Frantzeskakis D J and Malomed B A 2003 Phys. Rev. Lett. 90 230401
|
[37] |
Dong H and Ma Y L 2009 Chin. Phys. B 18 0715
|
[38] |
Abraham E R I, McAlexander W I, Sackett C A and Hulet R G 1995 Phys. Rev. Lett. 74 1315
|
[39] |
Xi Y D, Wang D L, He Z M and Ding J W 2009 Chin. Phys. B 18 0939
|
[40] |
Ao S M and Yan J R 2006 Chin. Phys. 15 0296
|
[41] |
Goursat E 1904 A Course in Mathematical Analysis (Translated by Hedrick E R) (New York: Dover publications)
|
[42] |
Duan Y S, Li S and Yang G H 1998 Nucl. Phys. B 514 705
|
[43] |
Kim Y E and Salasnich L 2005 Phys. Rev. A 71 033625
|
[44] |
Duan Y S and Zhang H 1999 Eur. Phys. J. D 5 47
|
[45] |
Kim Y E and Salasnich L 2005 Phys. Rev. A 71 033625
|
[46] |
Duan Y S, Li S and Yang G H 1998 Nucl. Phys. B 514 705
|
[47] |
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|