Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090402    DOI: 10.1088/1674-1056/21/9/090402
GENERAL Prev   Next  

Non-equilibrium Landauer transport model for Hawking radiation from a Reissner–Nordstrom black hole

Zeng Xiao-Xiong (曾晓雄)a, Zhou Shi-Wei (周史薇)b, Liu Wen-Biao (刘文彪)a
a Department of Physics, Institute of Theoretical Physics, Beijing Normal University, Beijing 100875, China;
b Department of Foundation, Academy of Armored Forces Engineering, Beijing 100072, China
Abstract  The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Reissner-Nordstrom black hole. The energy flow contains not only the contribution of the thermal flux but also that of the particle flux. It is found that the charge can also be transported via the one-dimensional quantum tunnel. Because of the existence of the electrostatic potential, the entropy production rate is shown to be smaller than that of the Schwarzschild black hole.
Keywords:  Hawking radiation      entropy      Landauer transport model      black hole  
Received:  29 March 2011      Revised:  23 May 2012      Accepted manuscript online: 
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  03.67.Hk (Quantum communication)  
  05.30.-d (Quantum statistical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10773002, 10875012, and 11175019) and the Fundamental Research Funds for the Central Universities, China (Grant No. 105116).
Corresponding Authors:  Liu Wen-Biao     E-mail:  wbliu@bnu.edu.cn

Cite this article: 

Zeng Xiao-Xiong (曾晓雄), Zhou Shi-Wei (周史薇), Liu Wen-Biao (刘文彪) Non-equilibrium Landauer transport model for Hawking radiation from a Reissner–Nordstrom black hole 2012 Chin. Phys. B 21 090402

[1] Hawking S W 1974 Nature 248 30
[2] Hawking S W 1975 Commun. Math. Phys. 43 199
[3] Gibbons G and Hawking S W 1977 Phys. Rev. D 15 2752
[4] Strominger A and Vafa C 1996 Phys. Lett. B 99 379
[5] Gibbons G W and Perry M J 1978 Proc. Roy. Soc. Lond. A 358 467
[6] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[7] Unruh W G 1976 Phys. Rev. D 14 870
[8] Damour T 1978 Phys. Rev. D 18 3598
[9] Robinson S P and Wilczek F 2005 Phys. Rev. Lett. 95 011303
[10] Zhang J Y and Zhao Z 2005 Nucl. Phys. B 725 173
[11] Zhang J Y and Zhao Z 2005 JHEP 0510 055
[12] Liu W B 2006 Phys. Lett. B 634 541
[13] Yang S Z 2005 Chin. Phys. Lett. 22 2492
[14] Xiao K, Liu W B and Zhang H B 2007 Phys. Lett. B 647 482
[15] Yang S Z and Chen D Y 2008 Chin. Phys. B 17 817
[16] Zeng X X and Li Q 2009 Chin. Phys. B 18 4716
[17] Jiang Q Q, Yang S Z and Wu S Q 2006 Chin. Phys. 15 2523
[18] Wu S Q and Cai X 2002 Chin. Phys. 11 661
[19] Parikh M K 2004 Int. J. Mod. Phys. D 13 2355
[20] Zhou S W and Liu W B 2009 Mod. Phys. Lett. A 24 2099
[21] Zeng X X and Yang S Z 2009 Chin. Phys. B 18 462
[22] Nation P D, Blencowe M P and Nori F 2012 New J. Phys. 14 033013
[23] Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. D 74 044017
[24] Banerjee R and Kulkarni S 2009 Phys. Rev. D 79 084035
[25] Alvarez-Gaume L and Witten E 1984 Nucl. Phys. B 234 269
[26] Bardeen W A and Zumino B 1984 Nucl. Phys. B 244 421
[27] Banerjee H and Banerjee R 1986 Phys. Lett. B 174 313
[28] Bertlmann R 2000 Anomalies in Quantum Field Theory (Oxford: Oxford Sciences)
[29] Landauer R 1957 IBM J. Res. Dev. 1 223
[30] Landauer R 1970 Philos. Mag. 21 863
[31] Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 Nature 404 974
[32] Rego L G C and Kirczenow G 1999 Phys. Rev. B 59 13080
[33] Davies P C W 1978 J. Phys. A: Math. Gen. 11 179
[34] Zurek W H 1982 Phys. Rev. Lett. 49 1683
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[3] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[4] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[5] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[6] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[7] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[8] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[9] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Information flow between stock markets: A Koopman decomposition approach
Semba Sherehe, Huiyun Wan(万慧云), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2022, 31(1): 018902.
[14] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[15] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
No Suggested Reading articles found!