a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA
Abstract We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification. The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol. With the saturated amplification, we can obtain high energy incoherent light pulses, whose full width at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy. Moreover, the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy. Selecting s-polarized fluorescence with a Glan-Taylor prism, the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed. The maximum output energy is 0.67 mJ for the optical parametric amplifier. By using optical filter and compressor, the generated high energy incoherent light has a great potential as the incoherent pump, signal or idler wave of parametric down-conversion process, so that a wave with a high degree of coherence can be generated from an incoherent pump light.
(Ultrafast processes; optical pulse generation and pulse compression)
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB613205) and the National Natural Science Foundation of China (Grant No. 61078005).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.