Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084211    DOI: 10.1088/1674-1056/21/8/084211

Amplification of fluorescence using collinear picosecond optical parametric amplification at degeneracy

Zhang Jing (张静)a, Zhang Qiu-Lin (张秋琳)a, Jiang Man (江曼)a, Zhang Dong-Xiang (张东香)a, Feng Bao-Hua (冯宝华)a, Zhang Jing-Yuan(张景园)b
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA
Abstract  We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification. The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol. With the saturated amplification, we can obtain high energy incoherent light pulses, whose full width at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy. Moreover, the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy. Selecting s-polarized fluorescence with a Glan-Taylor prism, the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed. The maximum output energy is 0.67 mJ for the optical parametric amplifier. By using optical filter and compressor, the generated high energy incoherent light has a great potential as the incoherent pump, signal or idler wave of parametric down-conversion process, so that a wave with a high degree of coherence can be generated from an incoherent pump light.
Keywords:  broadband parametric amplification      fluorescence      degeneracy      picosecond optical parametric amplifier  
Received:  27 February 2012      Revised:  21 March 2012      Accepted manuscript online: 
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB613205) and the National Natural Science Foundation of China (Grant No. 61078005).
Corresponding Authors:  Feng Bao-Hua     E-mail:

Cite this article: 

Zhang Jing (张静), Zhang Qiu-Lin (张秋琳), Jiang Man (江曼), Zhang Dong-Xiang (张东香), Feng Bao-Hua (冯宝华), Zhang Jing-Yuan(张景园) Amplification of fluorescence using collinear picosecond optical parametric amplification at degeneracy 2012 Chin. Phys. B 21 084211

[1] Baumgartner R A and Byer R L 1979 IEEE J. Quantum Electron. 15 432
[2] Siddiqui A M, Cirmi G, Brida D, Kärtner F X and Cerullo G 2009 Opt. Lett. 34 3592
[3] Wilhelm T, Piel J and Riedle E 1997 Opt. Lett. 22 1494
[4] Cerullo G, Nisoli M and De Silvestri S 1997 Appl. Phys. Lett. 71 3616
[5] Shirakawa A, Sakane I and Kobayashi T 1998 Opt. Lett. 23 1292
[6] Limpert J, Aguergaray C, Montant S, Manek-Hönniger I, Petit S, Descamps D, Cormier E and Salin F 2005 Opt. Express 13 7386
[7] Zhao B Z, Liang X Y, Leng Y X, Jiang Y L, Wang C, Lu H H, Du J, Xu Z Z and Shen D Z 2006 Appl. Opt. 45 565
[8] Khakhulin D V, Savel'ev A B and Volkov R V 2007 Laser Phys. Lett. 4 345
[9] Cirmi G, Brida D, Manzoni C, Marangoni M, De Silvestri S and Cerullo G 2007 Opt. Lett. 32 2396
[10] Fita P, Stepanenko Y and Radzewicz C 2005 Appl. Phys. Lett. 86 021909
[11] Chen X H, Han X F, Weng Y X and Zhang J Y 2006 Appl. Phys. Lett. 89 061127
[12] Han X F, Chen X H, Weng Y X and Zhang J Y 2007 J. Opt. Soc. Am. B 24 1633
[13] Han X F, Weng Y X, Pan A L, Zou B S and Zhang J Y 2008 Appl. Phys. Lett. 92 032102
[14] Picozzi A and Haelterman M 2001 Phys. Rev. Lett. 86 2010
[15] Piskarskas A, Pyragaite V and Stabinis A 2010 Phys. Rev. A 82 053817
[16] Zhang J, Zhang Q L, Zhang D X, Feng B H and Zhang J Y 2010 Appl. Opt. 49 6645
[17] Ross I N, Matousek P, Towrie M, Langley A J and Collier J L 1997 Opt. Commun. 144 125
[18] Zhang D X, Kong Y F and Zhang J Y 2000 Opt. Commun. 184 485
[19] Lu Z G, Liu H J, Jing F, Zhao W, Wang Y S and Peng Z T 2009 Acta Phys. Sin. 58 4689 (in Chinese)
[20] Du S F, Zhang D X, Shi Y X, Li Q N, Feng B H, Han X F, Weng Y X and Zhang J Y 2009 Opt. Commun. 282 1884
[21] Piskarskas A P, Stabinis A P and Pyragaite V 2010 IEEE J. Quantum Electron. 46 1031
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[3] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[4] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[5] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[6] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[7] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[8] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[9] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[10] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[11] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[12] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[13] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[14] A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup
Peng Zhou(周鹏), Xin-Ran Ma(马欣然), Shuang Zhang(张爽), Tian-Xi Sun(孙天希), Zhi-Guo Liu(刘志国). Chin. Phys. B, 2020, 29(2): 020702.
[15] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
No Suggested Reading articles found!