Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 083103    DOI: 10.1088/1674-1056/21/8/083103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dynamic mechanism for encapsulating two HIV replication inhibitor peptides with carbon nanotubes

Chen Bao-Dong (陈保栋), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光 )
School of Physics and Optoelectric Engineering, Ludong University, Yantai 264025, China
Abstract  Encapsulation of biomolecules inside carbon nanotube (CNT) has attracted great interest because it could provide possibility to delivery nanoscale pharmaceutical drug with CNT-based devices. Using molecular dynamics simulation, we investigate the dynamic process by which human immunodeficiency virus (HIV) replication inhibitor peptides (HRIPs) are encapsulated in a water solution contained inside CNT. The van der Waals attraction between HRIP and CNT and the root-mean-square deviation are used to analyse the evolution of the encapsulation. It is found that the interaction between the HRIP and the CNT is the main drive force for the encapsulation process and the encapsulation without causing obvious conformational change of the HRIPs.
Keywords:  molecular dynamics simulation      drug delivery      peptide-CNT interaction      spontaneous encapsulation      conformational change  
Received:  15 December 2011      Revised:  11 January 2012      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  87.15.H- (Dynamics of biomolecules)  
  87.10.Tf (Molecular dynamics simulation)  
  87.15.hp (Conformational changes)  
Fund: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2011AL010) and the National Natural Science Foundation of China (Grant Nos. NSFC-10974078 and NSFC-11174117).
Corresponding Authors:  Yang Chuan-Lu     E-mail:  yangchuanlu@263.net

Cite this article: 

Chen Bao-Dong (陈保栋), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光 ) Dynamic mechanism for encapsulating two HIV replication inhibitor peptides with carbon nanotubes 2012 Chin. Phys. B 21 083103

[1] Veetil J V and Ye K 2007 Biotechnol. Prog. 23 517
[2] Dhar S, Liu Z, Thomale J, Dai H J and Lippard S J 2008 J. Am. Chem. Soc. 130 11467
[3] Bao W X and Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese)
[4] Meng L J, Xiao H P, Tang C, Zhang K W and Zhong J X 2009 Acta Phys. Sin. 58 7781 (in Chinese)
[5] Wang Y, Wang X X, Ni X G and Wu H A 2003 Acta Phys. Sin. 52 3120 (in Chinese)
[6] Iijima S 1991 Nature 56 354
[7] Lin Y, Taylor S, Li H, Fernando K A S, Qu L, Wang W, Gu L, Zhou B and Sun Y P 2004 J. Mater. Chem. 14 527
[8] Lacerda L, Bianco A, Prato M and Kostarelos K 2006 Adv. Drug. Deliv. Rev. 58 1460
[9] Gao H, Kong Y, Cui D and Ozakan C S 2003 Nano Lett. 3 471
[10] Pei Q X, Lim C G, Cheng Y and Gao H 2008 J. Chem. Phys. 129 125101
[11] Kang Y, Wang Q, Liu Y C, Wu T, Chen Q and Guan W J 2008 J. Phys. Chem. B 112 4801
[12] Tsang S C, Davis J J, Green M L H, Hill H A O, Leung Y C and Sadler P J 1995 Chem. Commun. 17 1803
[13] Kang Y, Liu Y C, Wang Q, Wu T and Guan W J 2009 Biomaterials. 30 2807
[14] Xie Y H and Soh A K 2005 Mater. Lett. 59 971
[15] Hilder T A and Hill J M 2008 Micro & Nano Lett. 3 41
[16] Chen Q, Wang Q, Liu Y C, Wu T, Kang Y, Moore J D and Gubbins K G 2009 J. Chem. Phys. 131 015101
[17] Chen B D, Yang C L, Yang J S, Wang M S and Ma X G Mol. Phys. (in revision)
[18] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[19] Yang Z Y and Zhao Y P 2007 Engineering Analysis with Boundary Elements 31 402
[20] Li R, Hu Y Z and Wang H 2011 Acta Phys. Sin. 60 016106 (in Chinese)
[21] Yang Z Y and Zhao Y P 2006 Materials Science and Engineering A 423 84
[22] MacKerell A D, Bashford D, Bellott M, Dunbrack R L, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D and Karplus M 1998 J. Phys. Chem. B 102 3586
[23] Walther J H, Jaffe R, Halicioglu T and Koumoutsakos P 2001 J. Phys. Chem. B 105 9980
[24] Kang Y, Wang Q, Liu Y C, Shen J W and Wu T 2010 J. Phys. Chem. B 114 2869
[25] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, SKEEL R D, Kalé L and Schulten K 2005 Comput. Chem. 26 1781
[26] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[27] Hirschfelder J O, Curtiss C F and Brid R B 1964 Molecular Theory of Gases and Liquids 2nd edn. (New York: John Wiley)
[28] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!