Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 083102    DOI: 10.1088/1674-1056/21/8/083102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Size-dependent surface tension of cylindrical nano-bubble in liquid Ar

Yan Hong (闫红)a b, Zhu Ru-Zeng (朱如曾)a, Wei Jiu-An (魏久安 )a c
a State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Electronic Information and Physics, Changzhi University, Changzhi 046011, China;
c Advanced Semiconductor Materials (ASM) Technology Singapore, 2 Yishun Avenue 7, Singapore 768924
Abstract  In view of the continued disputes on the fundamental question whether the surface tension of vapour bubble in liquid argon increases, or decreases, or remains unchanged with the increase of curvature radius, the cylindrical vapour bubble of argon is studied by molecular dynamics simulation in this paper instead of spherical vapour bubble so as to reduce the statistical error. So far the surface tension of the cylindrical vapour bubble has not been studied by molecular dynamics simulation in the literature. Our results show that the surface tension decreases with radius increasing. By fitting Tolman equation with our data, the Tolman length δ =-0.6225 sigma is given under cut-off radius 2.5σ, where σ =0.3405 nm is the diameter of argon atom. The Tolman length of Ar being negative is affirmed and the Tolman length of Ar being approximately zero given in the literature is negated, and it is pointed that this error is attributed to the application of the inapplicable empirical equation of state and the neglect of the difference between surface of tension and equimolar surface.
Keywords:  cylindrical nano-bubble      surface tension      Tolman length      molecular dynamics simulation  
Received:  27 December 2011      Revised:  13 February 2012      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  68.03.Cd (Surface tension and related phenomena)  
  68.35.Md (Surface thermodynamics, surface energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072242).
Corresponding Authors:  Zhu Ru-Zeng     E-mail:  zhurz@lnm.imech.ac.cn

Cite this article: 

Yan Hong (闫红), Zhu Ru-Zeng (朱如曾), Wei Jiu-An (魏久安 ) Size-dependent surface tension of cylindrical nano-bubble in liquid Ar 2012 Chin. Phys. B 21 083102

[1] Matsumoto M and Tanaka K 2008 Fluid Dyn. Res. 40 546
[2] Tsai J C, Kumar M, Chen S Y and Lin J G 2007 Sep. Purif. Technol. 58 61
[3] Dupont V, Miscevic M, Joly J L and Platel V 2003 Int. J. Heat Mass Transfer 46 4245
[4] Yang J W, Duan J M, Fornasiero D and Ralston J 2003 J. Phys. Chem. B 107 6139
[5] Tolman R C 1949 J. Chem. Phys. 17 333
[6] Rowlinson J S and Widom B 1982 Molecular Theory of Capillarity (New York: Oxford University Press)
[7] Lu H M and Jiang Q 2005 Langmuir 21 779
[8] Protasova L N, Rebrow E V, Ismagilov Z R and Schouten J C 2009 Micropor. Mesopor. Mat. 123 243
[9] Prylutskyy Y I, Matzui L Y, Gavryushenko D A Sysoev V M and Scharff P 2005 Fuller. Nanotub. Car. N. 13 287
[10] Zhu R Z, Cui S W, Yan H, Yang Q W and Wen Y H 2007 Fuller Nanotub. Car. N. 6 417
[11] Park S H, Weng J G and Tien C L 2001 Int. J. Heat Mass Transfer 44 1849
[12] Nijmeijer M J P, Bruin C, van Woerkom A B and Bakker A F 1992 J. Chem. Phys. 96 565
[13] Kim B G, Lee J S, Han M H and Park S 2006 Nanosci. Microsci. Therm. 10 283
[14] Allen M P and Tildesley D J 1989 Computer Simulation of Liquids (New York: Oxford University Press)
[15] Wei J A 2005 Theories and Molecular Dynamics of Cylindrical Droplets and Their Contact Phenomena on Solid Surface, Master Dissertation (Advised by professor Zhu Ru-Zeng) Beijing, China
[16] Nijmeijer M J P, Bakker A F, Bruin C and Sikkenk J H 1988 J. Chem. Phys. 89 3789
[17] Thompson S M, Gubbins K E, Walton J P R B, Chantry R A R and Rowlinson J S 1984 J. Chem. Phys. 81 530
[18] Block B J, Das S K, Oettel M, Virnau P and Binder K 2010 J. Chem. Phys. 133 154702
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!