Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 078103    DOI: 10.1088/1674-1056/21/7/078103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A colloidal crystal double-heterostructure fabricated with the angle controlled inclined deposition method

Chen Ze-Feng(陈泽锋), Xiong Yu-Ying(熊予莹), Han Peng(韩鹏), Chen Yi-Hang(陈溢杭), and Xiao Hua(肖化)
Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  A self-assembly method, named angle controlled inclined deposition method, is developed for fabricating well-ordered silica and polystyrene colloidal crystal. A high quality colloidal crystal with flat and uniform surface over a large area can be produced rapidly using a minute quantity of suspension and without any additional equipment. By controlling the inclined angle, we can fabricate colloidal crystals with diverse numbers of layers. A colloidal crystal double-heterostructure (composed of three different colloidal photonic crystals) is rapidly fabricated with this method. Both experimental and simulation results show that the photonic band gap of the double-heterostructure is not a simple superposition of those of the compositional colloidal crystals along the stacking direction.
Keywords:  colloidal photonic crystal      self-assembly method      band gap      heterostructure  
Received:  14 July 2011      Revised:  02 March 2012      Accepted manuscript online: 
PACS:  81.10.Dn (Growth from solutions)  
  42.70.Qs (Photonic bandgap materials)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the Guangdong Province Natural Science Foundation, China (Grant No. 8151063101000030), the National Natural Science Foundation of China (Grant No. 10504008), and the Key Project of Chinese Ministry of Education (Grant No. 209091).
Corresponding Authors:  Han Peng     E-mail:  han_peng@163.com

Cite this article: 

Chen Ze-Feng(陈泽锋), Xiong Yu-Ying(熊予莹), Han Peng(韩鹏), Chen Yi-Hang(陈溢杭), and Xiao Hua(肖化) A colloidal crystal double-heterostructure fabricated with the angle controlled inclined deposition method 2012 Chin. Phys. B 21 078103

[1] Busch K and John S 1998 Phys. Rev. E 58 3896
[2] Hu X Y, Zhang Q, Liu Y H, Cheng B Y and Zhang D Z 2003 Appl. Phys. Lett. 83 2518
[3] Song B S, Noda S, Asano T and Akahane Y 2005 Nat. Mater. 4 207
[4] Srinivasan K, Barclay P E and Painter O 2004 Opt. Express 12 1458
[5] Liu Z Q, Feng T H, Dai Q F, Wu L J and Lan S 2009 Chin. Phys. B 18 2383
[6] Yan Q F, Zhao X S and Zhou Z C 2006 Journal of Crystal Growth 288 205
[7] Zhao Y X, Wostyn K, de Schaetzen G, Clays K, Hellemans L, Persoons A, Szekeres M and Schoonheydt R A 2003 Appl. Phys. Lett. 82 3764
[8] Rengarajan R, Jiang P, Larrabee D C, Colvin V L and Mittleman D M 2001 Phys. Rev. B 64 205103
[9] Napolskii K S, Sapoletova N A, Gorozhankin D F, Eliseev A A, Chernyshov D Y, Byelov D V, Grigoryeva N A, Mistonov A A, Bouwman W G, Kvashnina K O, Lukashin N V, Snigirev A A, Vassilieva A V, Grigoriev S V and Petukhov A V 2010 Langmuir 23 46
[10] Zhou Z C and Zhao X S 2004 Langmuir 20 1524
[11] Zhou Z C and Zhao X S 2005 Langmuir 21 4717
[12] Kim M H, Im S H and Park O O 2005 Adv. Funct. Mater. 15 1329
[13] Dimitrov A S and Nagayama K 1995 Chem. Phys. Lett. 243 462
[14] Spratte K, Chi L F and Riegler H 1994 Europhys. Lett. 25 211
[15] Wang X, Hu X H, Li Y Z, Jia W L, Xu C, Liu X H and Zi J 2002 Appl. Phys. Lett. 80 4291
[16] Chen X S, Lu W and Shen S C 2003 Solid State Commun. 127 541
[17] Qiao F, Zhang C, Wan J and Zi J 2000 Appl. Phys. Lett. 77 3698
[1] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[2] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[7] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[11] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[12] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!