Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 077402    DOI: 10.1088/1674-1056/21/7/077402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Substrate-induced stress in silicon nanocrystal/SiO2 multilayer structure

Tao Ye-Liao(陶也了)a), Zuo Yu-Hua(左玉华)a)†, Zheng Jun(郑军)a), Xue Chun-Lai(薛春来)a), Cheng Bu-Wen(成步文)a), Wang Qi-Ming(王启明)a), and Xu Jun(徐骏)b)
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b School of Electrical Science and Technology, Nanjing University, Nanjing 210093, China
Abstract  A Raman frequency upshift of nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm) layers are deposited by high vacuum radio-frequency magnetron sputtering on quartz and sapphire substrates at different temperatures. The samples are then annealed in N2 atmosphere at 1100 ℃ for 1 h for Si crystallization. It is demonstrated that the presence of a supporting substrate at the high grown temperature can induce different types of stresses in the Si nanocrystal layers. The strain is attributed to the difference in thermal expansion coefficient between the substrate and the Si/SiO2 SL film. Such a substrate-induced stress indicates a new method to tune the optical and the electronic properties of Si nanocrystals for strained engineering.
Keywords:  stress      Raman spectrum      silicon nanocrystal      sputtering  
Received:  22 November 2011      Revised:  13 December 2011      Accepted manuscript online: 
PACS:  74.25.nd (Raman and optical spectroscopy)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61021003, 61036001, and 51072194) and the Foundation of Chinese Academy of Sciences.
Corresponding Authors:  Zuo Yu-Hua     E-mail:  yhzuo@semi.ac.cn

Cite this article: 

Tao Ye-Liao(陶也了), Zuo Yu-Hua(左玉华), Zheng Jun(郑军), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), Wang Qi-Ming(王启明), and Xu Jun(徐骏) Substrate-induced stress in silicon nanocrystal/SiO2 multilayer structure 2012 Chin. Phys. B 21 077402

[1] Kumar V 2007 Nano Silicon (London: Elsevier)
[2] Xu H J, Chan Y F and Su L 2011 Chin. Phys. B 20 107801
[3] Wu Z Y, Liu K X and Ren X T 2010 Chin. Phys. B 19 097806
[4] Pavesi L, Dal Negro L, Mazzoleni C, Franz? G and Priolo L 2000 Nature 408 440
[5] Ruan J, Fauchet P M, Dal Negro L, Cazzanelli M and Pavesi L 2003 Appl. Phys. Lett. 83 5479
[6] Green M A, Cho E C, Cho Y H, Pink E, Trupke T, Lin K L, Fangsuwannarak T, Puzzer T, Conibeer G and Corkish R 2005 Proc. 20th European Photovoltaic Solar Energy Conf., June 6--10, 2005 Barcelona, Spain
[7] Hernandez S, Martinez S, Parinello P, Lebour Y, Garrido B, Jordana E and Fedeli J M 2008 J. Appl. Phys. 104 044304
[8] Zhang X G, Wang C, Lu Z Q, Yang J, Li L and Yang Y 2011 Acta Phys. Sin. 60 096101 (in Chinese)
[9] Chen X B, Lou Y B, Samia A C and Burda C 2003 Nano Lett. 3 799
[10] Arguirov T, Mchedlidze T and Kittler M 2006 Appl. Phys. Lett. 89 053111
[11] Veprek S, Sarott F A and Iqbal Z 1987 Phys. Rev. B 36 3344
[12] Bustarret E 1988 Appl. Phys. Lett. 52 1675
[13] Iqbal Z and Vepiek S 1982 J. Phys. C: Solid State Phys. 15 377
[14] Zi J, Buscher H, Falter C, Ludwig W, Zhang K and Xie X 1996 Appl. Phys. Lett. 69 200
[15] Srikar V Y, Swan A K and Selim Ünl? M 2003 Journal of Microelectromechanical Systems 12 779
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[5] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[6] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[9] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[10] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[11] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[12] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[13] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[14] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[15] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
No Suggested Reading articles found!