Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 067801    DOI: 10.1088/1674-1056/21/6/067801

Determination of elastic, piezoelectric, and dielectric constants of an R:BaTiO3 single crystal by Brillouin scattering

He Xiao-Kang(何小亢)a), Zeng Li-Bo(曾立波) a), Wu Qiong-Shui(吴琼水)a), Zhang Li-Yan(张丽艳)b), Zhu Ke(朱恪) b), and Liu Yu-Long(刘玉龙)b)
a. Electronic Information School, Wuhan University, Wuhan 430072, China;
b. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  From the sound velocity measured using the Brillouin scattering technique, the elastic, piezoelectric, and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room temperature. The elastic constants are in fairly good agreement with those of the BaTiO3 single crystal, measured previously by Brillouin scattering and the low-frequency equivalent circuit methods. However, their electromechanical properties are significantly different. Based on the sound propagation equations and these results, the directional dependence of the compressional modulus and the shear modulus of Rh:BaTiO3 in the (010) plane is investigated. Some properties of sound propagation and electromechanical coupling in the crystal are discussed.
Keywords:  Brillouin scattering      elastic and piezoelectric constants      Rh:BaTiO3 single crystal  
Received:  16 January 2012      Revised:  21 February 2012      Accepted manuscript online: 
PACS:  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874236 and 60808010).
Corresponding Authors:  Zhang Li-Yan     E-mail:

Cite this article: 

He Xiao-Kang(何小亢), Zeng Li-Bo(曾立波), Wu Qiong-Shui(吴琼水), Zhang Li-Yan(张丽艳), Zhu Ke(朱恪), and Liu Yu-Long(刘玉龙) Determination of elastic, piezoelectric, and dielectric constants of an R:BaTiO3 single crystal by Brillouin scattering 2012 Chin. Phys. B 21 067801

[1] Muller K A and Berlinger W1986 Phys. Rev. B 34 6130
[2] Zgonik M, Bernasconi P, Dueli M, Schlesser R, Gullter P, Garrett M H, Rytz D, Zhu Y and Wu X 1994 Phys. Rev. B 50 5941
[3] Lu H A, Wills L A, Wessels B W, Lin W P, Zhang T G, Wong G K, Neumayer D A and Marks T J 1993 Appl. Phys. Lett. 62 1314
[4] Xuan L Z, Pan S H, Chen Z H, Wang R P, Shi W S and Li C L 1998 Appl. Phys. Lett. 73 2896
[5] Zhang J S, Dou S X, Gao H, Zhu Y and Ye P X 1995 Appl. Phys. Lett. 67 458
[6] Shi W S, Chen Z H, Liu N N, Lu H B, Zhou Y L, Cui D F and Yang G Z 1999 Appl. Phys. Lett. 75 1547
[7] Zhang W F, Huang Y B, Zhang M S and Liu Z G 2000 Appl. Phys. Lett. 76 1003
[8] Huot N, Jonathan J M C and Roosen G 1997 Opt. Lett. 22 976
[9] Ding S, Zhu Y, Liu Y L, Siu G G, Lee C M and Jiang Y J 2005 Chin. Phys. Lett. 22 1790
[10] Li Z, Chan S K, Grimsditch M H and Zouboulis E S 1991 J. Appl. Phys. 70 7327
[11] Kaczmarek M, Hribek P and Eason R W 1997 Opt. Commun. 136 277
[12] Zhang R, Jiang B and Cao W 2001 J. Appl. Phys. 90 3471
[13] Jiang Z M, Liu Y L and Zhang P X 1987 Acta Phys. Sin. 36 952 (in Chinese)
[14] Zhou D, Lin D, Hou H T, Yong F Z, Qiang X H and Luo H S 2005 Acta Phys. Sin. 54 4053 (in Chinese)
[15] Dieulesaint E and Royer D 1980 Elastic Waves in Solids (New York: Wiley) p. 244
[16] Smith R T and Welsh F S 1971 J. Appl. Phys. 42 2219
[17] Xu Z K, Siu G G, Liu Y L and Luo H S 2007 J. Appl. Phys. 101 026113
[18] Ishidate T and Sasaki S 1987 J. Phys. Soc. Jpn. 56 4214
[19] Freire J D and Katiyar R S 1988 Phys. Rev. B 37 2074
[20] Wang R P, Jiang Y J, Zeng L Z, Liu Y L and Zhu Y 1996 J. Raman Spectrosc. 26 295
[21] Yin J H, Jiang B and Cao W 2000 IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 47 285
[22] Schaefer A, Schmitt H and Dorr A 1986 Ferroelectric 69 253
[1] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[2] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[3] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[4] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[5] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[6] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[7] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[8] Elastic, dielectric, and piezoelectric characterization of 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal by Brillouin scattering
Fang Shao-Xi (方绍熙), Tang Dong-Yun (汤冬云), Chen Zhao-Ming (陈昭明), Zhang Hua (张华), Liu Yu-Long (刘玉龙). Chin. Phys. B, 2015, 24(2): 027802.
[9] A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser
Hu Xiao-Yang (胡晓阳), Chen Wei (陈伟), Tu Xiao-Bo (涂晓波), Meng Zhou (孟洲). Chin. Phys. B, 2014, 23(12): 124208.
[10] Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering
Zhang Lei (张磊), Zhang Dong (张东), Li Jin-Zeng (李金增). Chin. Phys. B, 2013, 22(7): 074207.
[11] A new method for measuring the threshold of stimulated Brillouin scattering
Zhu Xue-Hua(朱学华), LŰ Zhi-Wei(吕志伟) and Wang Yu-Lei(王雨雷) . Chin. Phys. B, 2012, 21(7): 074205.
[12] A 168-W high-power single-frequency amplifier in an all-fiber configuration
Xiao Hu(肖虎), Dong Xiao-Lin(董小林), Zhou Pu(周朴), Xu Xiao-Jun(许晓军), and Zhao Guo-Min(赵国民) . Chin. Phys. B, 2012, 21(3): 034207.
[13] Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system
Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪) . Chin. Phys. B, 2012, 21(3): 034212.
[14] Bursting behaviours in cascaded stimulated Brillouin scattering
Liu Zhan-Jun(刘占军), He Xian-Tu(贺贤土), Zheng Chun-Yang(郑春阳), and Wang Yu-Gang(王宇钢) . Chin. Phys. B, 2012, 21(1): 015202.
[15] The 260-W coherent beam combining of two compact fibre amplifier chains
Wang Xiao-Lin(王小林), Ma Yan-Xing(马阎星), Zhou Pu(周朴), He Bing(何兵), Xue Yu-Hao(薛宇豪), Liu Chi(刘驰), Li Zhen(李震), Xiao Hu(肖虎), Xu Xiao-Jun(许晓军), Zhou Jun(周军), Liu Ze-Jin(刘泽金), and Zhao Yi-Jun(赵伊君) . Chin. Phys. B, 2011, 20(11): 114203.
No Suggested Reading articles found!