Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 067802    DOI: 10.1088/1674-1056/21/6/067802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Numerical simulation of four-wave mixing efficiency and its induced relative intensity noise

Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪)
Department of Optic Information Science and Technology, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Four-wave mixing, as well as its induced intensity noise, is harmful to wavelength division multiplexing systems. The efficiency and the relative intensity noise of four-wave mixing are numerically simulated for the two-wave and the three-wave fiber transmissions. It is found that the efficiency decreases with the increase of both the frequency spacing and the fiber length, which can be explained using the quasi-phase-matching condition. Furthermore, the relative intensity noise decreases with the increase of frequency spacing, while it increases with the increase of fiber length, which is due to the considerable power loss of the pump light. This investigation presents a good reference for the practical application of wavelength division multiplexing systems.
Keywords:  four-wave mixing      efficiency      relative intensity noise      phase matching  
Received:  21 November 2011      Revised:  30 November 2011      Accepted manuscript online: 
PACS:  78.47.nj (Four-wave mixing spectroscopy)  
  78.20.Bh (Theory, models, and numerical simulation)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61177073), the Open Fund of Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Provincial Higher Education Institutes, Jinan University (Grant No. gdol201101), the Fund of Innovation of Graduate School of National University of Defense Technology (Grant No. B110703), and Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2011B033).
Corresponding Authors:  Meng Zhou     E-mail:  zhoumeng6806@163.com

Cite this article: 

Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪) Numerical simulation of four-wave mixing efficiency and its induced relative intensity noise 2012 Chin. Phys. B 21 067802

[1] Nash P, Strudley A, Crickmore R and DeFreitas J 2009 Proc. SPIE 7503 75037T
[2] Kringlebotn J T, Nakstad H and Eriksrud M 2009 Proc. SPIE 7503 75037U
[3] Rao Y, Feng S, Jiang Q and Ran Z 2009 Proc. SPIE 7503 75031Q
[4] Shibata N, Braun R P and Waarts 1987 IEEE J. Quantum Electronics QE-23 1205
[5] Shibata N, Azuma Y, Tateda M and Nakano Y 1988 Electron. Lett. 24 1528
[6] Chen W and Meng Z 2011 Opt. Laser Technol. 43 1270
[7] Yang D and Kumar S 2009 J. Lightwave Technol. 27 2916
[8] Ito Y, Tamo T and Numai T 2009 Opt. Commun. 282 3989
[9] Yuan J H, Sang X Z, Yu C X, Xin X J, Li S G, Zhou G Y and Hou L T 2010 Chin. Phys. B 19 074218
[10] Xin X J, Ma J X, Zhang Q, Deng C G, Wang K R, Yu C X and Liu B 2009 Chin. Phys. B 18 3449
[11] Kaur G and Singh M L 2009 Optik 120 268
[12] Song J and Fan C C 1996 J. China Institute Commun. 17 120 (in Chinese)
[13] Shimizu T, Nakajima K, Shiraki K, Ieda K and Sankawa I 2008 Opt. Fiber Technol. 14 14
[14] Chen W, Wang K and Meng Z 2010 Chin. Opt. Lett. 8 365
[15] Chen W and Meng Z 2010 Chin. Opt. Lett. 8 1124
[16] Chen W and Meng Z 2011 Chin. J. Lasers 38 0305002 (in Chinese)
[17] Chen W and Meng Z 2011 J. Phys. B: At. Mol. Opt. 44 165402
[18] Chen W and Meng Z 2011 Proc. SPIE 7753 77532G
[19] Wang S H, Ren L Y and Liu Y 2009 Acta Phys. Sin. 58 3943 (in Chinese)
[20] Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)
[21] Chen X D, Shi J W, Liu J, Liu B, Xu Y X, Shi J L and Liu D H 2010 Acta Phys. Sin. 59 1047 (in Chinese)
[22] Singh M L 2010 Optik 121 778
[23] Xiang Y, Wen S, Dai X, Tang Z, Su W and Fan D 2007 J. Opt. Soc. Am. B 24 3058
[24] Dai X, Xiang Y, Wen S and Fan D 2009 J. Opt. Soc. Am. B 26 564
[25] Klinger J, Martin H and Chen Z 2001 Opt. Lett. 26 271
[26] Zhong X Q and Xiang A P 2010 Chin. Phys. B 19 064212
[27] Xu W C, Zhang S M, Chen W C, Luo A P, Guo Q and Liu S H 2002 Chin. Phys. 11 39
[28] Sheetala A, Sharmab A K and Kaler R S 2010 Optik 121 246
[29] Costa N M S and Cartaxo A V T 2008 J. Lightwave Technol. 26 3640
[30] Agrawal G P 2001 Nonlinear Fiber Optics (San Diego: Academic Press)
[31] Yuan H, Xu A S, Wang C and Wu D M 1996 Commun. Nonlinear Sci. & Numer. Simul. 1 1
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[4] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[5] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[6] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[7] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[8] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[9] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[10] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[11] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[12] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[13] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[14] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[15] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
No Suggested Reading articles found!