Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064601    DOI: 10.1088/1674-1056/21/6/064601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinearity and periodic solution of a standard-beam balance oscillation system

Li Shi-Song(李世松)a)b), Lan Jiang(兰江)a)b), Han Bing(韩冰)b), Tan Hong(谭红)b), and Li Zheng-Kun(李正坤)b)
a. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
b. National Institute of Metrology (NIM), Beijing 100013, China
Abstract  We present the motion equation of the standard-beam balance oscillation system, whose beam and suspensions, compared with the compound pendulum, are connected flexibly and vertically. The nonlinearity and the periodic solution of the equation are discussed by the phase-plane analysis. We find that this kind of oscillation can be equivalent to a standard-beam compound pendulum without suspensions; however, the equivalent mass centre of the standard beam is extended. The derived periodic solution shows that the oscillation period is tightly related to the initial pivot energy and several systemic parameters: beam length, masses of the beam, and suspensions, and the beam mass centre. A numerical example is calculated.
Keywords:  balance oscillation      nonlinearity      limit cycle      phase plane  
Received:  15 June 2011      Revised:  13 August 2011      Accepted manuscript online: 
PACS:  46.25.Cc (Theoretical studies)  
  46.40.Ff (Resonance, damping, and dynamic stability)  
  46.05.+b (General theory of continuum mechanics of solids)  
  46.40.-f (Vibrations and mechanical waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51077120) and the National Department Public Benefit Research Foundation (Grant No. 201010010).
Corresponding Authors:  Li Shi-Song     E-mail:  leeshisong@sina.com

Cite this article: 

Li Shi-Song(李世松), Lan Jiang(兰江), Han Bing(韩冰), Tan Hong(谭红), and Li Zheng-Kun(李正坤) Nonlinearity and periodic solution of a standard-beam balance oscillation system 2012 Chin. Phys. B 21 064601

[1] David G B, Liu J F, Ehsan F M and Li J 1994 Phys. Lett. A 193 223
[2] Allan D W 1966 P. IEEE 54 221
[3] Kumagai M, Ito H, Kajita M and Hosokawa M 2008 Metrologia 45 139
[4] Huang Y and He S L 2010 Research and Exploration in Laboratory 29 35 (in Chinese)
[5] Girard G 1994 Metrologia 31 317
[6] Mo J Q, Lin Y H and Lin W T 2009 Acta Phys. Sin. 58 6692 (in Chinese)
[7] Yan H, Jiang H Y, Liu W J and Ulannov A M 2009 Acta Phys. Sin. 58 5238 (in Chinese)
[8] Shen M, Xi N, Kong Q, Ge L J, Shi J L and Wang Q 2009 Chin. Phys. B 18 2822
[1] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[2] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[3] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[4] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[5] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[6] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[7] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[8] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[9] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[10] Nonlinear dynamics of a classical rotating pendulum system with multiple excitations
Ning Han(韩宁) and Pei-Pei Lu(鲁佩佩). Chin. Phys. B, 2020, 29(11): 110502.
[11] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[12] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[13] Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition
Dan-Dan Cao(曹丹丹), Feng Wan(弯峰), Ya-Juan Hou(侯雅娟), Hai-Bo Sang(桑海波), Bai-Song Xie(谢柏松). Chin. Phys. B, 2018, 27(6): 065201.
[14] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[15] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
No Suggested Reading articles found!