Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 065201    DOI: 10.1088/1674-1056/27/6/065201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition

Dan-Dan Cao(曹丹丹)1,2, Feng Wan(弯峰)1,2, Ya-Juan Hou(侯雅娟)1,2, Hai-Bo Sang(桑海波)1,2, Bai-Song Xie(谢柏松)1,2
1 College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Beijing Radiation Center, Beijing 100875, China
Abstract  

The dynamics of the confinement transition from L mode to H mode (LH) is investigated in detail theoretically via the extended three-wave coupling model describing the interaction of turbulence and zonal flow (ZF) for the first time. Thereinto, turbulence is divided into a positive-frequency (PF) wave and a negative-frequency (NF) one, and the gradient of pressure is added as the auxiliary energy for the system. The LH confinement transition is observed for a sufficiently high input energy. Moreover, it is found that the rotation direction of the limit cycle oscillation (LCO) of PF wave and pressure gradient is reversed during the transition. The mechanism is illustrated by exploring the wave phases. The results presented here provide a new insight into the analysis of the LH transition, which is helpful for the experiments on the fusion devices.

Keywords:  limit cycle oscillation      three-wave interaction      confinement transition      turbulence  
Received:  09 January 2018      Revised:  19 March 2018      Accepted manuscript online: 
PACS:  52.55.-s (Magnetic confinement and equilibrium)  
  52.35.Ra (Plasma turbulence)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  05.60.-k (Transport processes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11305010 and 11475026) and the Joint Foundation of the National Natural Science Foundation and China Academy of Engineering Physics (Grant No.U1530153).

Corresponding Authors:  Hai-Bo Sang     E-mail:  sanghb@bnu.edu.cn

Cite this article: 

Dan-Dan Cao(曹丹丹), Feng Wan(弯峰), Ya-Juan Hou(侯雅娟), Hai-Bo Sang(桑海波), Bai-Song Xie(谢柏松) Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition 2018 Chin. Phys. B 27 065201

[1] Wagner F, Becker G and Behringer K 1982 Phys. Rev. Lett. 49 1408
[2] Whyte D G, Hubbard A E and Hughes J W 2010 Nucl. Fusion 50 105005
[3] Wagner F 2007 Plasma Physics Controlled Fusion 49 1
[4] Xu G S, Shao L M, Liu S C, Wang H Q, Wan B N, Guo H Y, Diamond P H, Tynan G. R, Xu M and Zweben S J 2014 Nucl. Fusion 541 13007
[5] Xu G S, Wang H Q, Wan B N, Guo H Y, Naulin V, Diamond P H, Tynan G R, Xu M, Yan N and Zhang W 2012 Phys. Plasmas 19 R35
[6] Diamond P H, Itoh S I, Itoh K and Hahm T S 2005 Plasma Physics Controlled Fusion 47 R35
[7] Kim E J and Diamond P H 2003 Phys. Rev. Lett. 90 185006
[8] Burrell and Keith H 1999 Phys. Plasmas 6 4418
[9] Burrell K H, Austin M E, Greenfield C M, Lao L L, Rice B W, Staebler G M and Stallard B W 1998 Plasma Physics Controlled Fusion 40 1585
[10] Dam Magnus, Brons Morten, Rasmussen Jens Juul, Naulin Volker and Xu Guosheng 2013 Phys. Plasmas 20 102302
[11] Weymiens W, Paquay S, De Blank H J and Hogeweij G M D 2014 Phys. Plasmas 21 052302
[12] Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J and Yu D L 2006 Phys. Rev. Lett. 96 255004
[13] Moyer R A, Tynan G R, Holl C and Burin M J 2001 Phys. Rev. Lett. 87 135001
[14] Diamond P H, Rosenbluth M N, Sanchez E, Hidalgo C, Van Milligen B, Estrada T, Branas B, Hirsch M, Hartfuss H J and Carreras B A 2000 Phys. Rev. Lett. 84 4842
[15] Tynan G R, Moyer R A, Burin M J and Holl C 2001 Phys. Plasmas 8 2691
[16] Stoltzfusdueck T, Diallo A, Zweben S and Banerjee S 2016 Phys. Plasmas 23 05405
[17] Xu Y, Cheng J, Dong J Q, Dong Y B, Jiang M, Zhong W L, Yan L W, Shi Z B, Huang Z H and Li Y G 2015 Plasma Physics Controlled Fusion 57 14028
[18] Kobayashi T, Itoh K, Ido T, Kamiya K, Itoh S I, Miura Y, Nagashima Y, Fujisawa A, Inagaki S and Ida K 2013 Phys. Rev. Lett. 111 035002
[19] Cheng J, Dong J Q, Itoh K, Yan L W, Xu M, Zhao K J, Hong W Y, Huang Z H, Ji X Q and Zhong W L 2013 Phys. Rev. Lett. 110 265002
[20] Schmitz L 2017 Nucl. Fusion 57 025003
[21] Cziegler I, Hubbard A E, Hughes J W, Terry J L and Tynan G R 2017 Phys. Rev. Lett. 118 105003
[22] Wersinger J M, Finn J M and Ott E 1980 Phys. Fluids 23 1142
[23] K F He 1987 Acta Phys. Sin. 36 1458 (in Chinese)
[24] Terry P and Horton W 1982 Phys. Fluids 25 491
[25] K F He 2011 From solitary wave to turbulence:Dynamics of nonlinear waves (Beijing:Peking University Press) pp. 20, 119 (in Chinese)
[26] Hammack J L and Henderson D M 1993 Ann. Rev. Fluid Mech. 25 55
[27] K F He 1996 Acta Phys. Sin. 45 1 (in Chinese)
[28] K F He 1993 Acta Phys. Sin. 42 1035 (in Chinese)
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[3] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[4] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[5] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[6] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[7] The role of velocity derivative skewness in understanding non-equilibrium turbulence
Feng Liu(刘锋), Le Fang(方乐), and Liang Shao(邵亮)$. Chin. Phys. B, 2020, 29(11): 114702.
[8] Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence
Da-Jun Liu(刘大军), Yao-Chuan Wang(王耀川), Gui-Qiu Wang(王桂秋), Hong-Ming Yin(尹鸿鸣), Hai-Yang Zhong(仲海洋). Chin. Phys. B, 2019, 28(10): 104207.
[9] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[10] Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model
Jing Ma(马晶), Yu-Long Fu(付玉龙), Si-Yuan Yu(于思源), Xiao-Long Xie(谢小龙), Li-Ying Tan(谭立英). Chin. Phys. B, 2018, 27(3): 034201.
[11] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[12] Turbulence modulation model for gas-particle flow based on probability density function approach
Lu Wang(王路), Jiang-rong Xu(徐江荣). Chin. Phys. B, 2017, 26(8): 084702.
[13] Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state
Xiang Yan(闫香), Peng-Fei Zhang(张鹏飞), Jing-Hui Zhang(张京会), Xiao-Xing Feng(冯晓星), Chun-Hong Qiao(乔春红), Cheng-Yu Fan(范承玉). Chin. Phys. B, 2017, 26(6): 064202.
[14] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(2): 024201.
[15] High sampling-rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering
Li Chen(陈力), Fu-Rong Yang(杨富荣), Tie Su(苏铁), Wei-Yi Bao(鲍伟义), Bo Yan(闫博), Shuang Chen(陈爽), Ren-Bing Li(李仁兵). Chin. Phys. B, 2017, 26(2): 025205.
No Suggested Reading articles found!