Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110502    DOI: 10.1088/1674-1056/ab9df2
GENERAL Prev   Next  

Nonlinear dynamics of a classical rotating pendulum system with multiple excitations

Ning Han(韩宁) and Pei-Pei Lu(鲁佩佩)
Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding 071002, China
Abstract  

We report an attempt to reveal the nonlinear dynamic behavior of a classical rotating pendulum system subjected to combined excitations of constant force and periodic excitation. The unperturbed system characterized by strong irrational nonlinearity bears significant similarities to the coupling of a simple pendulum and a smooth and discontinuous (SD) oscillator, especially the phase trajectory with coexistence of Duffing-type and pendulum-type homoclinic orbits. In order to learn the effect of constant force on this pendulum system, all types of phase portraits are displayed by means of the Hamiltonian function with large constant excitation especially the transitions of complex singular closed orbits. Under sufficiently small perturbations of the viscous damping and constant excitation, the Melnikov method is used to analyze the global structure of the phase space and the feature of trajectories. It is shown, both theoretically and numerically, that this system undergoes a homoclinic bifurcation and then bifurcates a unique attracting rotating limit cycle. Finally, the estimation of the chaotic threshold of the rotating pendulum system with multiple excitations is calculated and the predicted periodic and chaotic motions can be shown by applying numerical simulations.

Keywords:  rotating pendulum      Melnikov method      rotating limit cycle      chaotic dynamics  
Received:  06 April 2020      Revised:  09 June 2020      Accepted manuscript online:  18 June 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11702078 and 11771115), the Natural Science Foundation of Hebei Province, China (Grant No. A2018201227) and the High-Level Talent Introduction Project of Hebei University, China (Grant No. 801260201111).
Corresponding Authors:  Corresponding author. E-mail: hanning.bing@163.com; ninghan@hbu.edu.cn   

Cite this article: 

Ning Han(韩宁) and Pei-Pei Lu(鲁佩佩) Nonlinear dynamics of a classical rotating pendulum system with multiple excitations 2020 Chin. Phys. B 29 110502

Fig. 1.  

(a) The physical model of the classical rotating pendulum with multiple excitations, (b) the simple pendulum with rotation feature, (c) the mass-spring oscillator with bi-stable characteristics (SD oscillator).

Fig. 2.  

When f0 = 0 and ξ = 0: (a) the equilibrium bifurcation set (λ,q), (b) the nonlinear restoring force for (λ,q) ∈ I, (c) the nonlinear restoring force for $(\lambda,q)\in {\mathcal B} $, (d)–(f) three types of the nonlinear restoring forces for (λ,q) ∈ II, where ${\rm{II}}={{\rm{II}}}_{1}\displaystyle \cup {\mathcal L} \displaystyle \cup {{\rm{II}}}_{2}$.

Fig. 3.  

(a) Phase portrait with the pendulum-type homoclinic orbits for (λ,q)=(2,3) ∈ I, (b) phase portrait with the coupling of the pendulum-type and Duffing-type homoclinic orbits for (λ,q) = (1.2,3) ∈ II.

Fig. 4.  

(a) Cylindrical phase portrait with the pendulum-type homoclinic orbits for (λ,q) = (2,3) ∈ I, (b) cylindrical phase portrait with the coupling of the pendulum-type and Duffing-type homoclinic orbits for (λ,q) = (1.2,3) ∈ II.

Fig. 5.  

Dynamic behavior of system (3) for (λ,q) ∈ I: (a) the equilibrium bifurcation diagram for f0 versus x, (b)–(e) the corresponding phase portraits and the nonlinear restoring forces marked by dashed lines.

Fig. 6.  

Dynamic behavior of system (3) for (λ,q) ∈ II1: (a) the equilibrium bifurcation diagram for f0 versus x, (b)–(i) the corresponding phase portraits and the nonlinear restoring forces marked by dashed lines.

Fig. 7.  

Dynamic behavior of system (3) for $(\lambda,q)\in {\mathcal L} $: (a) the equilibrium bifurcation diagram for f0 versus x, (b)–(f) the corresponding phase portraits and the nonlinear restoring forces marked by dashed lines.

Fig. 8.  

Dynamic behavior of system (3) for (λ,q) ∈ II2: (a) the equilibrium bifurcation diagram for f0 versus x, (b)–(i) the corresponding phase portraits and the nonlinear restoring forces marked by dashed lines.

Fig. 9.  

Dynamic behaviors of the pendulum system with viscous damping and constant excitation for (λ,q) ∈ I: (a) none of limit cycle surrounding the equilibrium for 2 π f0a1ξ < 0, (b) the bifurcation of the upper homoclinic orbit for 2πf0a1ξ = 0, (c) a rotating limit cycle for 2πf0a1ξ > 0.

Fig. 10.  

Dynamic behaviors of the pendulum system with viscous damping and constant excitation for (λ,q) ∈ II: (a) none of limit cycle surrounding the equilibrium for 2πf0a1ξ < 0, (b) the bifurcation of upper homoclinic orbit for 2πf0a1ξ = 0, (c) a rotating limit cycle for 2πf0a1ξ > 0.

Fig. 11.  

Cylindrical phase portraits of the pendulum system with viscous damping and constant excitation for q = 0, ξ = 0.2 and a1 = 8: (a) no limit cycle for f0 = 0.0001, (b) the bifurcation of the upper homoclinic orbit for f0 ≈ 0.2527, (c) a rotating limit cycle for f0 = 0.3.

Fig. 12.  

The chaotic boundaries detected by the Melnikov analysis for the Duffing-type and pendulum-type homoclinic orbits at q = 3 and λ = 1.5: (a) σ = 0.5 (${R}_{{\rm{\hom }}1}^{\pm }(1.8)=0.7556$, ${R}_{{\rm{\hom }}2}^{+}(1.8)=4.1508$, ${R}_{{\rm{\hom }}2}^{-}(1.8)=6.5314$), (b) σ = 1 (${R}_{{\rm{\hom }}1}^{\pm }(0.5)=0.8541$, ${R}_{{\rm{\hom }}2}^{+}(0.5)=1.3500$, ${R}_{{\rm{\hom }}2}^{-}(0.5)=3.5212$), (c) σ = 2.

Fig. 13.  

When q = 3, λ = 1.5, ξ = 0.06, f0 = 0.03 and ω = 1.8: (a) bifurcation diagram for f1 versus x with the threshold values ${f}_{1}^{{\rm{\hom }}1}=0.0427$ (solid line), ${f}_{1}^{{{\rm{\hom }}2}^{+}}=0.0675$ (dashed line) and ${f}_{1}^{{{\rm{\hom }}2}^{-}}=0.1761$ (dotted line), (b) the corresponding largest Lyapunov exponents under the initial condition (1,0); (c) the phase portraits of a pair of period-1 solutions for f1 = 0.1 and their time histories (d); (e) the phase portrait of period-3 solution for f1 = 0.65 and the corresponding time history (f); (g) the phase portrait of period-13 solution for f1 = 1.5 and the corresponding time history (h); (i)–(k) three chaotic attractors for f1 = 0.92, 1.7, 1.9, respectively.

Fig. 14.  

When q = 3, λ = 1.5, ξ = 0.05, f0 = 0.05 and ω = 0.5: (a) bifurcation diagram for f1 versus x with the threshold values ${f}_{1}^{{\rm{\hom }}1}=0.0453$ (solid line), ${f}_{1}^{{{\rm{\hom }}2}^{+}}=0.2490$ (dashed line) and ${f}_{1}^{{{\rm{\hom }}2}^{-}}=0.3919$ (dotted line); (b) the local enlargements for f1 ∈ [1.5,1.8]; (c)–(e) three types of chaotic motions for f1 = 0.8, 1.55, 1.8 and the corresponding time histories (f)–(h); (i)–(k) three periodic motions for f1 = 1.575, 1.616, 1.78, respectively.

Fig. 15.  

(a) A two-dimensional parameter space plot for q = 3, λ = 1.5, f0 = 0.1, ξ = 0.2 in the range of f1 ∈ [0,2] and ω ∈ [1,4] and theoretical boundary derived by the Melnikov analysis, (b) the bifurcation diagram of f1 with the threshold f1 = 0.13 and (c) the corresponding Lyapunov exponents for ξ = 1.515 (the gray region corresponds to the chaotic region, the white region represents non-chaotic region and the black curve ${\bar{R}}_{{\rm{\hom }}}(\omega )=1$ is the theoretical boundary of chaos).

Fig. 16.  

Cylindrical phase portraits of oscillations starting initial condition (x,y) = (1,0): (a) SD-type chaotic motion, (b) Duffing-type chaotic motion; chaotic cylindrical phase portraits of the coupling of oscillations and rotations (c) and (d).

[1]
Peters R D 2004 Sci. Educ. 13 279 DOI: 10.1023/B:SCED.0000041838.62582.ce
[2]
Matthews M R, Gauld C F, Stinner A 2005 The Pendulum: Scientific, Historical, Philosophical and Educational Perspectives Dordrecht Springer 139
[3]
Parks H V, Faller J E 2010 Phys. Rev. Lett. 105 110801 DOI: 10.1103/PhysRevLett.105.110801
[4]
Carroll S P, Owen J S, Hussein M F M 2014 J. Sound Vib. 333 5865 DOI: 10.1016/j.jsv.2014.06.022
[5]
Stachowiak T, Okada T 2006 Chaos Solitons Fract. 29 417 DOI: 10.1016/j.chaos.2005.08.032
[6]
Roy J, Mallik A K, Bhattacharjee J K 2013 Nonlinear Dyn. 73 993 DOI: 10.1007/s11071-013-0848-1
[7]
Eissa M, Sayed M 2008 Commun. Nonlinear Sci. Numer. Simul. 13 465 DOI: 10.1016/j.cnsns.2006.04.001
[8]
Gitterman M 2010 Physica A 389 3101 DOI: 10.1016/j.physa.2010.03.008
[9]
Paula A S D, Savi M A, Wiercigroch M, Pavlovskaia E 2012 Int. J. Bifur. Chaos 22 1250111 DOI: 10.1142/S0218127412501118
[10]
Horton B, Wiercigroch M, Xu X 2008 Philos. Trans. R. Soc. A 366 767 DOI: 10.1098/rsta.2007.2126
[11]
Bartuccelli M V, Gentile G, Georgiou K V 2001 Proc. R. Soc. London A 457 3007 DOI: 10.1098/rspa.2001.0841
[12]
Han N, Cao Q J 2016 Int. J. Non-Linear Mech. 88 122 DOI: 10.1016/j.ijnonlinmec.2016.10.018
[13]
Xu X, Wiercigroch M. 2007 Nonlinear Dyn. 47 311 DOI: 10.1007/s11071-006-9074-4
[14]
Das S, Wahi P 2016 Proc. R. Soc. A 472 20160719 DOI: 10.1098/rspa.2016.0719
[15]
Zhang H, Ma T W 2012 Nonlinear Dyn. 70 2433 DOI: 10.1007/s11071-012-0631-8
[16]
Koch B P, Leven R W 1985 Physica D 16 1 DOI: 10.1016/0167-2789(85)90082-X
[17]
Ji J C, Chen Y S 1999 Appl. Math. Mech. 20 350 DOI: 10.1007/BF02458560
[18]
Albert Luo C J, Min F H 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 4704 DOI: 10.1016/j.cnsns.2011.01.028
[19]
Leven R W, Koch B P 1981 Phys. Lett. A 86 71 DOI: 10.1016/0375-9601(81)90167-5
[20]
Kapitaniak M, Czolczynski K, Perlikowski P, Kapitaniak T 2012 Phys. Rep. 517 1 DOI: 10.1016/j.physrep.2012.03.002
[21]
Najdecka A, Kapitaniak T, Wiercigroch M. 2015 Int. J. Non-Linear Mech. 70 84 DOI: 10.1016/j.ijnonlinmec.2014.10.008
[22]
Wojna M, Wijata A, Wasilewski G, Awrejcewicz J. 2018 J. Sound Vib. 430 214 DOI: 10.1016/j.jsv.2018.05.032
[23]
Alevras P, Brown I, Yurchenko D. 2015 Nonlinear Dyn. 81 201 DOI: 10.1007/s11071-015-1982-8
[24]
Wu S T, Siao P S 2012 J. Sound Vib. 331 3020 DOI: 10.1016/j.jsv.2012.02.021
[25]
Mahmoudkhani S 2018 J. Sound Vib. 425 102 DOI: 10.1016/j.jsv.2018.03.025
[26]
Najdecka A, Narayanan S, Wiercigroch M 2015 Int. J. Non-Linear Mech. 71 30 DOI: 10.1016/j.ijnonlinmec.2014.12.008
[27]
Jia M M, Jiang H G, Li W J 2019 Acta Phys. Sin. 68 130503 in Chinese
[28]
Cao Q J, Han N, Tian R L 2011 Chin. Phys. Lett. 28 0605021
[29]
Han N, Cao Q J, Wiercigroch M 2013 Int. J. Bifur. Chaos 23 1350074 DOI: 10.1142/S0218127413500740
[30]
Han N, Cao Q J 2016 Commun. Nonlinear Sci. Numer. Simulat. 36 431
[31]
Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C, Thompson J M T 2006 Phys. Rev. E 74 046218 DOI: 10.1103/PhysRevE.74.046218
[32]
Li Z X, Cao Q J, Alain L 2016 Chin. Phys. B 25 010502 DOI: 10.1088/1674-1056/25/1/010502
[33]
Hong L, Xu J 2004 Commun. Nonlinear Sci. Numer. Simulat. 9 313
[34]
Ueda Y 2006 Ann. New York Acad. Sci. 357 422 DOI: 10.1111/j.1749-6632.1980.tb29708.x
[35]
Zhang X H, Zhou L Q 2018 Appl. Math. Model. 61 744 DOI: 10.1016/j.apm.2018.05.003
[36]
Hou L, Chen H Z, Chen Y S, Lu K, Liu Z S 2019 Mech. Syst. Signal Process. 125 65 DOI: 10.1016/j.ymssp.2018.07.019
[37]
Hou L, Su X C, Chen Y S 2019 Int. J. Bifur. Chaos 29 1950173 DOI: 10.1142/S0218127419501736
[38]
Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C, Thompson J M T 2008 Philos. Trans. R. Soc. A 366 635 DOI: 10.1098/rsta.2007.2115
[39]
Guckenheimer J, Holmes P 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields New York Springer 184
[40]
Melnikov V K 1963 Trans. Moscow. Math. Soc. 12 1
[41]
Hu H Y 2000 Applied Nonlinear Dynamics Beijing Aviation Industry Press of China 38 in Chinese
[42]
Strogatz S H 2015 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Beijing China Machine Press 272
[43]
Kwekt K H, Li J B 1996 Int. J. Non-Linear Mech. 31 277 DOI: 10.1016/0020-7462(95)00068-2
[44]
Sun J C 2016 Chin. Phys. Lett. 33 100503 DOI: 10.1088/0256-307X/33/10/100503
[45]
Gao F, Li W Q, Tong H Q et al. 2019 Chin. Phys. B 28 090501 DOI: 10.1088/1674-1056/ab38a4
[46]
Seydel R 1985 Physica D 17 308 DOI: 10.1016/0167-2789(85)90213-1
[47]
Albert Luo C J 2017 Resonance and Bifurcation to Chaos in Pendulum Beijing Higher Education Press of China 220
[48]
Liu Y Z, Chen L Q 2001 Nonlinear Vibrations Beijing Aviation Industry Press of China 286 in Chinese
[49]
Feng J Q 2018 Nonlinear Dynamics of a Typical Vibro-Impact System Beijing Science Press of China 95 in Chinese
[1] Homoclinic and heteroclinic chaos in nonlinear systems driven by trichotomous noise
You-Ming Lei(雷佑铭), Hong-Xia Zhang(张红霞). Chin. Phys. B, 2017, 26(3): 030502.
[2] Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation
Yin Jiu-Li (殷久利), Xing Qian-Qian (邢倩倩), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(8): 080201.
[3] Crystalline undulator radiation and sub-harmonic bifurcation of system
Luo Xiao-Hua (罗晓华), He Wei (何为), Wu Mu-Ying (吴木营), Shao Ming-Zhu (邵明珠), Luo Shi-Yu (罗诗裕). Chin. Phys. B, 2013, 22(6): 064210.
[4] Markov transition probability-based network from time series for characterizing experimental two-phase flow
Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德). Chin. Phys. B, 2013, 22(5): 050507.
[5] Nonexistence of ultra-subharmonic periodic orbits in periodically forced differential equation
Gao Jing-Wu (高经武), Li Qing-Shi (李庆士). Chin. Phys. B, 2005, 14(7): 1365-1369.
[6] Modelling of chaotic systems based on modified weighted recurrent least squares support vector machines
Sun Jian-Cheng (孙建成), Zhang Tai-Yi (张太镒), Liu Feng (刘枫). Chin. Phys. B, 2004, 13(12): 2045-2052.
No Suggested Reading articles found!