|
|
Quantum phases of Bose gases on a lattice with pair-tunneling |
Wang Yue-Ming(王月明)† and Liang Jiu-Qing(梁九卿) |
Department of Physics, Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We investigate the strongly interacting lattice Bose gases on a lattice with two-body interaction of nearest neighbors characterized by pair tunneling. The excitation spectrum and the depletion of the condensate of lattice Bose gases are investigated using the Bogoliubov transformation method and the results show that there is a pair condensate as well as a single particle condensate. The various possible quantum phases, such as the Mott-insulator phase (MI), the superfluid phase (SF) of an individual atom, the charge density wave phase (CDW), the supersolid phase (SS), the pair-superfluid (PSF) phase, and the pair-supersolid phase (PSS) are discussed in different parametric regions within our extended Bose-Hubbard model using perturbation theory.
|
Received: 12 February 2012
Revised: 21 March 2012
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075099, 10974124, and 11105087). |
Corresponding Authors:
Wang Yue-Ming
E-mail: wang_ym@sxu.edu.cn
|
Cite this article:
Wang Yue-Ming(王月明) and Liang Jiu-Qing(梁九卿) Quantum phases of Bose gases on a lattice with pair-tunneling 2012 Chin. Phys. B 21 060305
|
[1] |
Greiner M, Bloch I, Mandel O, Hänch T W and Esslinger T 2001 Phys. Rev. Lett. 87 160405
|
[2] |
Orzel C, Tuchman A K, Fenselau M L, Yasuda M and Kasevich M A 2001 Science 291 2386
|
[3] |
Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
|
[4] |
Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51
|
[5] |
Anglin J R and Ketterle W 2002 Nature 416 211
|
[6] |
Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
|
[6] |
Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
|
[7] |
Liang J Q, Liu J L, Li W D and Li Z J 2009 Phys. Rev. A 79 033617
|
[8] |
Fölling S, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, M黮ler T and Bloch I 2007 Nature 448 1029
|
[9] |
Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
|
[10] |
Kuklov A B and Svistunov B V 2003 Phys. Rev. Lett. 90 100401
|
[11] |
Eckholt M and García-Ripoll J J 2009 New J. Phys. 11 093028
|
[12] |
Park J and Sim H S 2010 Phys. Rev. B 82 235318
|
[13] |
Wysokiński K I 2010 Phys. Rev. B 82 115423
|
[14] |
Zhou T 2011 Phys. Rev. Lett. 106 167001
|
[15] |
Longhi S 2011 Phys. Rev. A 83 043835
|
[16] |
Wang Y M and Liang J Q 2010 Phys. Rev. A 81 045601
|
[17] |
Liang J J, Liang J Q and Liu W M 2003 Phys. Rev. A 68 043605
|
[18] |
Pethick C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases 2nd edn. (Cambridge: Cambridge University Press) p. 231
|
[19] |
Radzihovsky L, Park J and Weichman P B 2004 Phys. Rev. Lett. 92 160402
|
[20] |
Sheshadri K, Krishnamurthy H R, Pandit R and Ramakrishnan T V 1993 Europhys. Lett. 22 257
|
[21] |
Oosten D V, Straten P V and Stoof H T C 2001 Phys. Rev. A 63 053601
|
[22] |
Wang Y J, Liu X F and Han J R 2009 Chin. Phys. B 18 5301
|
[23] |
Freericks J K and Monien H 1996 Phys. Rev. B 53 2691
|
[24] |
Capogrosso-Sansone B, Söyler S G, Prokof'ev N V and Svistunov B V 2008 Phys. Rev. A 77 015602
|
[25] |
Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404
|
[26] |
Spielman I B, Phillips W D and Porto J V 2008 Phys. Rev. Lett. 100 120402
|
[27] |
Gerbier F, Trotzky S, Fölling S, Schnorrberger U, Thompson J D, Widera A, Bloch I, Pollet L, Troyer M, Sansone B C, Prokof'ev N V and Svistunov B V 2008 Phys. Rev. Lett. 101 155303
|
[28] |
Van Otterlo A, Wagenblast K H, Baltin R, Bruder C, Fazio R and Schön G 1995 Phys. Rev. B 52 16176
|
[29] |
Bruder C, Fazio R and Schön G 1993 Phys. Rev. B 47 342
|
[30] |
Niyaz P, Scalettar R T, Fong C Y and Batrouni G G 1994 Phys. Rev. B 50 362
|
[31] |
K黨ner T D, White S R and Monien H 2000 Phys. Rev. B 61 12474
|
[32] |
Kovrizhin D L, Pai G V and Sinha S 2005 Europhys. Lett. 72 162
|
[33] |
Leggett A J 1970 Phys. Rev. Lett. 25 1543
|
[34] |
Ohliger M and Pelster A 2008 arXiv/: 0810.4399v1
|
[35] |
Iskin M and Freericks J K 2009 Phys. Rev. A 79 053634
|
[36] |
Zhou X F, Zhang Y S and Guo G C 2009 Phys. Rev. A 80 013605
|
[37] |
Messiah A 1962 Quantum Mechanics Vol. II (Amsterdam: North-Holland) p. 686
|
[38] |
Dos Santos F E A and Pelster A 2009 Phys. Rev. A 79 013614
|
[39] |
Scarola V W, Demler E and Das Sarma S 2006 Phys. Rev. A 73 051601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|