Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057107    DOI: 10.1088/1674-1056/21/5/057107

Optical Tamm state polaritons in a quantum well microcavity with gold layers

Zhang Wei-Li (张伟利) and Rao Yun-Jiang(饶云江)
Key Laboratory of Optical Fiber Sensing and Communications of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A new type of cavity polariton, the optical Tamm state (OTS) polariton, is proposed to be realized by sandwiching a quantum well (QW) between a gold layer and a distributed Bragg reflector (DBR). It is shown that OTS polaritons can be generated from the strong couplings between the QW excitons and the free OTSs. In addition, if a second gold layer is introduced into the bottom of the DBR, two independent free OTSs can interact strongly with the QW excitons to produce extra OTS polaritons.
Keywords:  semiconductor microcavity      polariton      optical Tamm state      surface plasmons  
Received:  19 May 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.67.De (Quantum wells)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.70.-g (Interactions of particles and radiation with matter)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106045).

Cite this article: 

Zhang Wei-Li (张伟利) and Rao Yun-Jiang(饶云江) Optical Tamm state polaritons in a quantum well microcavity with gold layers 2012 Chin. Phys. B 21 057107

[1] Butov L V 2007 Nature 447 540
[2] Zhang W L and Yu S F 2010 Opt. Express 18 21219
[3] Amo A, Liew T C H, Adrados C, Houdr? R, Giacobino E, Kavokin A V and Bramati A 2010 Nature Photonics 4 361
[4] Liew T C H, Kavokin A V and Shelykh I A 2008 Phys. Rev. Lett. 101 016402
[5] Ozbay E 2006 Science 311 189
[6] Wei L, Wang Y G and Yang B J 2011 Acta Phys. Sin. 60 260 (in Chinese)
[7] Kovakin A V and Malpuech G 2003 Cavity Polartons (Amsterdam:Elesevier)
[8] Kavokin A and Malpuech G 2005 Appl. Phys. Lett. 87 261105
[9] Zhang W L and Yu S F 2010 Opt. Commun. 283 2622
[10] Ashcroft N W and Mermin N D 1976 Solid State Physics (Toronto:Thomson Learning)
[11] Bao J and Liang X X 2010 Chin. Phys. B 19 094101
[12] Liu B C, Yu L and Lu Z X 2011 Chin. Phys. B 20 037302
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[7] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[8] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[9] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[10] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[11] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[12] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[13] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[14] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[15] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
No Suggested Reading articles found!