Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 055201    DOI: 10.1088/1674-1056/21/5/055201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Improvement on the wave absorbing property of a lossy frequency selective surface absorber using a magnetic substrate

Sun Liang-Kui(孙良奎), Cheng Hai-Feng(程海峰), Zhou Yong-Jiang(周永江), and Wang jun(王军)
Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defence Technology, Changsha 410073, China
Abstract  An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface (FSS) absorber by using a magnetic substrate, showing that it is possible to widen the wave absorbing bandwidth. Three pieces of magnetic substrates are prepared. According to the complex permittivity and permeability, the reflectivity of the corresponding absorber is calculated by the finite difference time-domain (FDTD) method, and the bandwidth of the reflectivity below-10 dB is optimized by genetic algorithm. The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate; the reflectivity bandwidth below-10 dB of the single layer FSS absorber can reach 3.6--18 GHz with a thickness of 5 mm, which is wider than that with a dielectric substrate. The density of the FSS absorber is only 0.92 g/cm3. Additionally, the absorption band can be further widened by inserting a second lossy FSS. Finally, a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result. The experimental result is consistent with the design one.
Keywords:  wave absorbing performance      lossy frequency selective surface (FSS)      bandwidth  
Received:  23 June 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  68.35.bt (Other materials)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  

Cite this article: 

Sun Liang-Kui(孙良奎), Cheng Hai-Feng(程海峰), Zhou Yong-Jiang(周永江), and Wang jun(王军) Improvement on the wave absorbing property of a lossy frequency selective surface absorber using a magnetic substrate 2012 Chin. Phys. B 21 055201

[1] Zou Y H, Jiang L Y, Wen S C, Shu W X, Qing Y J, Tang Z X, Luo H L and Fan D Y 2008 Appl. Phy. Lett. 93 261115.
[2] Xie W, Cheng H F, Chu Z Y, Zhou Y J, Liu H T and Chen Z H 2009 Mater. Design 30 1201
[3] Jiang T J, Zhen L, Zhang B Y, Shao W Z and Xu C Y 2008 Scripta Mater. 59 967
[4] He Y F, Gong R Z, Wang X and Zhao Q 2008 Acta Phys. Sin. 57 5261 (in Chinese)
[5] Liu H T, Cheng H F, Chu Z Y and Zhang D Y 2007 Mater. Design 28 2166
[6] Alireza K Z and Anders K 2009 IEEE Tran. Antenn. Propag. 57 2307
[7] Sun L K, Cheng H F, Zhou Y J and Wang J 2011 Acta Phys. Sin. 60 108901 (in Chinese)
[8] Knott E F, Shaeffer J F and Tuley M T 1985 Radar Cross Section (Dedham:Atech House)
[9] Che Seman F, Cahill R, Fusco V F and Goussetis G 2011 IET Microw. Anten. P. 5 149
[10] Che Seman F, Cahill R and Fusco V 2009 IET Electron. Lett. 45 10
[11] Simms S and Fusco V 2005 IET Electron. Lett. 24 1311
[12] Engheta N 2002 IEEE Antennas and Propagation Int. Symp. 2 392
[13] Lee W J, Lee J W and Kim C G 2008 Compos. Sci. Technol. 68 2485
[14] Filippo C, Agostino M and Giuliano M 2010 IEEE Tran. Antenn. Propag. 58 1551
[15] Yeo J, Ma F T and Mittra R 2005 Microw. Opt. Technol. Lett. 44 6
[16] Wang J B and Lu J 2011 Acta Phys. Sin. 60 057304 (in Chinese)
[17] Liu J C, Liu C Y, Kuei C P, Wu C Y and Hong Y S 2006 Microw. Opt. Technol. Lett. 48 449
[18] Sourav C, Raj M and Neil R W 2002 IEEE Tran. Antenn. Propag. 50 284
[19] Costa F, Monorchio A and Manara G 2009 International Conference on Electromagnetics in Advanced Applications 9 852
[20] Smith D R, Vier D C, Koschny Th and Soukoulis C M 2005 Phy. Rev. E 71 036617
[1] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[2] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[3] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[4] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[5] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[6] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[7] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[8] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[9] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[10] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[11] Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons
Song Yue(岳松), Dong-ping Gao(高冬平), Zhao-chuan Zhang(张兆传), Wei-long Wang(王韦龙). Chin. Phys. B, 2016, 25(11): 118403.
[12] Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance
Li Jin (李进), Xiong Bing (熊兵), Sun Chang-Zheng (孙长征), Luo Yi (罗毅), Wang Jian (王健), Hao Zhi-Biao (郝智彪), Han Yan-Jun (韩彦军), Wang Lai (汪莱), Li Hong-Tao (李洪涛). Chin. Phys. B, 2015, 24(7): 078503.
[13] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[14] Fabrication and characterization of novel high-speed InGaAs/InP uni-traveling-carrier photodetector for high responsivity
Chen Qing-Tao (陈庆涛), Huang Yong-Qing (黄永清), Fei Jia-Rui (费嘉瑞), Duan Xiao-Feng (段晓峰), Liu Kai (刘凯), Liu Feng (刘锋), Kang Chao (康超), Wang Jun-Chu (汪君楚), Fang Wen-Jing (房文敬), Ren Xiao-Min (任晓敏). Chin. Phys. B, 2015, 24(10): 108506.
[15] Analysis of the injection-locked magnetron with a mismatched circulator
Yue Song (岳松), Zhang Zhao-Chuan (张兆传), Gao Dong-Ping (高冬平). Chin. Phys. B, 2014, 23(8): 088402.
No Suggested Reading articles found!