Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 055202    DOI: 10.1088/1674-1056/21/5/055202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of multicomponent dust grains in a cold quantum dusty plasma

Yang Xiu-Feng(杨秀峰)a), Wang Shan-Jin(王善进)b), Chen Jian-Min(陈建敏)c), Shi Yu-Ren(石玉仁)a), Lin Mai-Mai(林麦麦)a), and Duan Wen-Shan(段文山)a)
a. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
b. School of Electronic Engineering, Dongguan University of Technology, Dongguan 523106, China;
c. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China
Abstract  By employing the quantum hydrodynamic model for electron--ion--dust plasma, we derive a dispersion relation of the quantum dusty plasma. The effects of the dust size distribution on the dispersion relation in a cold quantum dusty plasma are studied. Both analytical and numerical results are given to compare the differences between the dusty plasma by considering the dust size distribution and the mono-sized dusty plasma. It is shown that many system parameters can significantly influence the dispersion relation of the quantum dusty plasma.
Keywords:  quantum dusty plasma      dispersion relation      dust size distribution  
Received:  11 May 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  52.27.-h (Basic studies of specific kinds of plasmas)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  11.55.Fv (Dispersion relations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875098) and the Natural Science Foundation of Northwest Normal University, China (Grant Nos. NWNU-KJCXGC-03-48 and NWNU-KJCXGC-03-17).

Cite this article: 

Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) Effect of multicomponent dust grains in a cold quantum dusty plasma 2012 Chin. Phys. B 21 055202

[1] Shukla P K 2004 Phys. Plasmas 11 3676
[2] Losseva T V, Popel S I, Yu M Y and Ma J X 2007 Phys. Rev. E 75 046403
[3] Hou J R and Wang Y N 2003 Acta Phys. Sin. 52 434 (in Chinese)
[4] Wang Y N, Chou J, Zhu Y X, Chang D and Chang J K 1992 Regul. Pept. 37 327
[5] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space Sci. 38 543
[6] Barkan A, D'Angelo N and Merlino R L 1994 Phys. Rev. Lett. 73 3093
[7] Barkan A, Merlino R L and D'Angelo N 1995 Phys. Plasmas 2 3563
[8] Thompson C, Barkan A, D'Angelo N and Merlino R L 1997 Phys. Plasmas 4 2331
[9] Chow V W, Mendis D A and Rosenberg M 1993 J. Geophys. Res. 98 19056
[10] Verheest F, Jacobs G and Cattaert T 2003 New J. Phys. 5 211
[11] Cattaert T and Verheest F 2004 IEEE Trans. Plasma Sci. 32 537
[12] Meuris P 1997 Planet. Space Sci. 45 449
[13] Chen J H 2009 Chin. Phys. B 18 2121
[14] Brattli A, Havnes O and Melandso F J 1997 Phys. Plasmas 58 691
[15] Ishak-Boushaki M, Bahamida S and Annou R Phys. Plasmas 10 3418
[16] EI-Labany S K, Safi F M and Moslem W M 2007 Planet. Space Sci. 55 2192
[17] Verheest F and Yaroshenko V V 2009 Astron. Astrophys. 503 683
[18] Duan W S and Parkes J 2003 Phys. Rev. E 68 067402
[19] Liu Z M, Duan W S and He G J 2008 Phys. Plasmas 15 083702
[20] Aslaksen T K and Havens O 1992 J. Gephys. Res. 97 19175
[21] Meuris P 1997 Planet. Space Sci. 45 1171
[22] Shukla P K and Ali S 2005 Phys. Plasmas 12 114502
[23] Ali S and Shukla P K 2006 Phys. Plasmas 13 022313
[24] Misra A P and Chowdhury A R 2006 Phys. Plasmas 13 072305
[25] Moslem W M, Shukla P K, Ali S and Schlikeiser R 2007 Phys. Plasmas 14 042107
[26] Shukla P K 2006 Phys. Lett. A 352 242
[27] Markowich P A, Ringhofer C A and Schmeiser C 1990 Semiconductor Equations (Vienna:Springer)
[28] Jung Y D 2001 Phys. Plasmas 8 3842
[29] Manfredi G 2005 Fields Inst. Commun. 46 263
[30] Kremp D, Bornath Th, Bonitz M and Shlanges M 1999 Phys. Rev. E 60 4725
[31] Manfredi G and Haas F 2001 Phys. Rev. B 64 075316
[32] Haas F, Garcial L G, Goedert J and Manfriedi G 2003 Phys. Plasmas 10 3858
[33] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol:Institute of Physics)
[34] Duan W S and Shi Y R 2003 Chaos. Solitions Fractal 18 321
[35] El-Taibany W F and Wadati M 2007 Phys. Plasmas 14 042302
[36] El-Labany S K, El-Siragy N M, El-Taibany W F, El-Shamy E F and Behery E E 2010 Phys. Plasmas 17 053705
[37] Qi X H, Duan W S, Chen J M and Wang S J 2011 Chin. Phys. B 20 025203
[38] He G J, Duan W S and Tian D X 2008 Phys. Plasmas 15 043702
[1] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[2] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[3] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[4] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[5] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[6] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[7] A k·p analytical model for valence band of biaxial strained Ge on (001) Si1-xGex
Wang Guan-Yu(王冠宇), Zhang He-Ming(张鹤鸣), Gao Xiang(高翔), Wang Bin(王斌), and Zhou ChunYu(周春宇) . Chin. Phys. B, 2012, 21(5): 057103.
[8] Dispersion relation of dust acoustic waves in metallic multi-walled carbon nanotubes
Ali Fathalian and Shahram Nikjo . Chin. Phys. B, 2012, 21(5): 057306.
[9] Dispersion relation of excitation mode in spin-polarized Fermi gas
Liu Ke(刘可) and Chen Ji-Sheng(陈继胜) . Chin. Phys. B, 2012, 21(3): 030309.
[10] Surface plasmon–polaritons on ultrathin metal films
Quan Jun(全军), Tian Ying(田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(4): 047201.
[11] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can(刘炳灿), Yu Li(于丽), and Lu Zhi-Xin(逯志欣). Chin. Phys. B, 2011, 20(3): 037302.
[12] Effects of dust size distribution in ultracold quantum dusty plasmas
Qi Xue-Hong(祁学宏), Duan Wen-Shan(段文山), Chen Jian-Min(陈建敏), and Wang Shan-Jin(王善进) . Chin. Phys. B, 2011, 20(2): 025203.
[13] Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution
Zhang Li-Ping(张丽萍), Xue Ju-Kui(薛具奎), and Li Yan-Long(李延龙) . Chin. Phys. B, 2011, 20(11): 115201.
[14] The dispersion relations for surface plasmon in a nonlinear–metal–nonlinear dielectric structure
Liu Bing-Can(刘炳灿), Yu Li(于丽), Lu Zhi-Xin(逯志欣), and Zhang Kai(张恺). Chin. Phys. B, 2010, 19(9): 097303.
[15] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
No Suggested Reading articles found!