ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spontaneous emission from an atom in a photonic crystal with two coherent bands |
Huang Xian-Shan(黄仙山)†, Liu Hai-Lian(刘海莲), and Wang Dong(王东) |
School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China |
|
|
Abstract The dynamic and the radiative properties of an excited three-level atom embedded in an anisotropic photonic crystal with two coherent bands are investigated. The relative position of the atom in a Wigner--Seitz cell is described with a position-dependent parameter θ(r0), which is used as the coherent parameter for the two bands. The result shows that the dynamic properties of the atomic system are not only determined by atomic transition frequencies, but also affected by the gap width and the coherence of the two bands. In addition, the spontaneous emission spectrum of the atomic transition in free space is discussed. The center and the intensity of the spectrum can be obviously manipulated via the coherent parameter.
|
Received: 14 August 2011
Revised: 27 April 2012
Accepted manuscript online:
|
PACS:
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the Natural Science College Key Projects of Anhui Province, China (Grant No. KJ2010A335) and the National Natural Science Foundation of China (Grant No. 41075027). |
Cite this article:
Huang Xian-Shan(黄仙山), Liu Hai-Lian(刘海莲), and Wang Dong(王东) Spontaneous emission from an atom in a photonic crystal with two coherent bands 2012 Chin. Phys. B 21 054218
|
[1] |
Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
|
[2] |
John S 1987 Phys. Rev. Lett. 58 2486
|
[3] |
Chen L and Nurmikko A V 2004 Appl. Phys. Lett. 85 3663
|
[4] |
Brinkley S, Lin Y D, Chakraborty A, Pfaff N, Cohen D, Speck J S, Nakamura S and DenBaars S P 2011 Appl. Phys. Lett. 98 011110
|
[5] |
Agrawal M, Sun Y, Forrest S R and Peumans P 2007 Appl. Phys. Lett. 90 241112
|
[6] |
Nishimura S, Abrams N, Lewis B A, Halaoui L I, Mallouk T E, Benkstein K D, van de Lagemaat J and Frank A J 2003 J. Am. Chem. Soc. 125 6306
|
[7] |
Bermel P, Luo C Y, Zeng L R, Kimerling L C and Joannopoulos J D 2007 Opt. Express 15 16986
|
[8] |
Zeng L, Yi Y, Hong C Y, Liu J, Feng N N, Duan X, Kimerling L C and Alamariu B 2006 Appl. Phys. Lett. 89 111
|
[9] |
Khodjasteh K and Lidar D A 2003 Phys. Rev. A 68 022322
|
[10] |
Noda S, Fujita M and Asano T 2007 Nature Photon. 1 449
|
[11] |
Liu J T, Xiao W B, Huang J H, Yu T B and Deng X H 2010 Acta Phys. Sin. 59 1665 (in Chinese)
|
[12] |
Solomon G S, Pelton M and Yamamoto Y 2001 Phys. Rev. Lett. 86 3903
|
[13] |
Han K, Wang Z Y, Shen X P, Wu Q H, Tong X, Tang G and Wu Y X 2011 Acta Phys. Sin. 60 044212 (in Chinese)
|
[14] |
John S and Wang J 1990 Phys. Rev. Lett. 64 2418
|
[15] |
Bay S, Lambropoulos P and Molmer K 1997 Phys. Rev. Lett. 79 2654
|
[16] |
Yang Y P, Fleischhauer M and Zhu S Y 2003 Phys. Rev. A 68 043805
|
[17] |
Cheng S C, Wu J N, Yang T J and Hsieh W F 2009 Phys. Rev. A 79 013801
|
[18] |
John S and Quang T 1994 Phys. Rev. A 50 1764
|
[19] |
Angelakis D G, Paspalakis E and Knight P L 2001 Phys. Rev. A 64 013801
|
[20] |
Zhou B, Du C G and Li S Q 2004 Chin. Phys. Lett. 21 856
|
[21] |
Li Z Y and Xia Y 2001 Phys. Rev. A 63 043817
|
[22] |
Angelakis D G, Paspalakis E and Knight P L 2000 Phys. Rev. A 61 055802
|
[23] |
Wang X H, Yuri S, Kivshar and Gu B Y 2004 Phys. Rev. Lett. 93 073901
|
[24] |
Liu N H, Xu J P and Zhu S Y 2006 Phys. Rev. B 74 075314
|
[25] |
Inés de Vega and Alonso D 2008 Phys. Rev. A 77 043836
|
[26] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press) Chap. 4
|
[27] |
Paspalakis E, Angelakis D G and Knight P L 1999 Opt. Commun. 72 229
|
[28] |
Wang J, Yang D and Zhang H Z 2005 Chin. Phys. 14 0323
|
[29] |
Li Z Y, Lin L L and Zhang Z Q 2000 Phys. Rev. Lett. 84 4341
|
[30] |
Vats N, John S and Busch K 2002 Phys. Rev. A 65 043808
|
[31] |
Yang Y P and Zhu S Y 2000 Phys. Rev. A 62 013805
|
[32] |
Huang X S and Yang Y P 2007 J. Opt. Soc. Am. B 24 699
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|