Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 104204    DOI: 10.1088/1674-1056/25/10/104204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

Jiang Li(姜丽)1, Ren-Gang Wan(万仁刚)2, Zhi-Hai Yao(姚治海)1
1 Changchun University of Science and Technology, Changchun 130000, China;
2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract  The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission.
Keywords:  anisotropic photonic crystal      spontaneous emission      microwave field      quantum coherence  
Received:  04 March 2016      Revised:  28 April 2016      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).
Corresponding Authors:  Jiang Li, Ren-Gang Wan     E-mail:  jiangli08@mails.jlu.edu.cn;wrg@snnu.edu.cn

Cite this article: 

Jiang Li(姜丽), Ren-Gang Wan(万仁刚), Zhi-Hai Yao(姚治海) Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal 2016 Chin. Phys. B 25 104204

[1] Zhu S Y and Chan Richy C F 1995 Phys. Rev. A 52 710
[2] Gao J Y, Guo C, Guo X Z, Jin G X, Wang P W, Zhao J, Zhang H Z, Jiang Y, Wang D Z and Jiang D M 1992 Opt. Commun. 93 323
[3] Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
[4] Zhou P and Swain S 1998 J. Opt. Soc. Am. B 15 2593
[5] Joshi A and Xiao M 2005 Eur. Phys. J. D 35 547
[6] Zhou P and Swain S 1997 Phys. Rev. A 55 772
[7] Garraway B M and Knight P L 1996 Phys. Rev. A 54 3592
[8] John S 1984 Phys. Rev. Lett. 53 2169
[9] Yablonovitch E 1996 Phys. Rev. Lett. 58 2059
[10] Nusinsky I and Hardy Amos A 2008 J. Opt. Soc. Am. B 25 1135
[11] Zhu S Y, Yang Y P, Chen H, Zheng H and Zubairy M S 2000 Phys. Rev. Lett. 84 2136
[12] John S and Quang T 1994 Phys. Rev. A 50 1764
[13] Wang J, Yang D and Zhang H Z 2005 Chin. Phys. 14 323
[14] Huang X S, Liu H L and Wang D 2012 Chin. Phys. B 21 054218
[15] Huang X S, Liu H L and Wang D 2012 Chin. Phys. B 21 0542182
[16] Angelakis D G, Paspalakis E and Knight P L 2001 Phys. Rev. A 64 013801
[17] Zhu S Y, Narducci L M and Scully M O 1995 Phys. Rev. A 52 4791
[18] Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
[19] Li J H, Chen A X, Liu J B and Yang X X 2007 Opt. Commun. 278 124
[20] Ghafoor F, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 62 013811
[21] Li J H 2007 Eur. Phys. J. D 42 467
[22] Ghafoor F 2011 Opt. Commun. 284 1913
[23] Ding C L, Li J and Yang X 2011 Appl. Phys. B 103 669
[24] Ding C L, Li J H and Yang X X 2011 Opt. Commun. 284 4550
[25] Jiang X Q, Zhang B, Lu Z W and Sun X D 2011 Phys. Rev. A 83 053823
[26] Zhang K, Zhu Y P, Jiang L and Zhang H Z 2010 Chin. Phys. B 19 054206
[27] Steck D, 87Rb D line data, available online at http://steck.us/alkalidata
[28] Li H B, Sautenkov V A, Rostovtsev Y V, Welch G R, Hemmer P R and Scully M O 2009 Phys. Rev. A 80 023820
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[6] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[7] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[8] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[9] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[10] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[11] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[12] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[13] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[14] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[15] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
No Suggested Reading articles found!