Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054219    DOI: 10.1088/1674-1056/21/5/054219
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design and fabrication of broadband rugate filter

Zhang Jun-Chao(张俊超)a)b), Fang Ming(方明)a), Shao Yu-Chuan(邵宇川)a)b), Jin Yun-Xia(晋云霞)a), and He Hong-Bo(贺洪波)a)
a. Key Laboratory of Material Science and Technology for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b. Optic and Laser Division, National Institute of Metrology, Beijing 100013, China
Abstract  The design and the deposition of a rugate filter for broadband applications are discussed. The bandwidth is extended by increasing the rugate period continuously with depth. The width and the smoothness of the reflection band with the distribution of the periods are investigated. The improvement of the steepness of the stopband edges and the suppression of the side lobes in the transmission zone are realized by adding two apodized rugate structures with fixed periods at the external broadband rugate filter interfaces. The rapidly alternating deposition technology is used to fabricate a rugate filter sample. The measured transmission spectrum with a reflection bandwidth of approximately 505 nm is close to that of the designed broadband rugate filter except a transmittance peak in the stopband. Based on the analysis of the cross-sectional scanning electron microscopic image of the sample, it is found that the transmission peak is most likely to be caused by the instability of the deposition rate.
Keywords:  rugate filter      broadband      rapidly alternating deposition  
Received:  16 August 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  42.79.Ry (Gradient-index (GRIN) devices)  
  81.15.Cd (Deposition by sputtering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10704079) and the NSAF Joint Fund, China (Grant No. 10976030).

Cite this article: 

Zhang Jun-Chao(张俊超), Fang Ming(方明), Shao Yu-Chuan(邵宇川), Jin Yun-Xia(晋云霞), and He Hong-Bo(贺洪波) Design and fabrication of broadband rugate filter 2012 Chin. Phys. B 21 054219

[1] Zhao L, Sui Z, Zhu Q H, Zhang Y and Zuo Y L 2009 Acta Phys. Sin. 58 3977 (in Chinese)
[2] Bovard B G 1993 Appl. Opt. 32 5427
[3] Baumeister P W 1985 Appl. Opt. 24 2687
[4] Tang C J, Jaing C C, Lee K S and Lee C C 2008 Appl. Opt. 47 C167
[5] Jup? M, Lappschies M, Jensen L, Starke K and Ristau D 2007 SPIE 640311
[6] Shen Z C, Wang Y J, Fan Z X and Shao J D 2005 Acta Phys. Sin. 54 0295 (in Chinese)
[7] Gunning W J, Hall R L, Woodberry F J, Southwell W H and Gluck N S 1989 Appl. Opt. 28 2945
[8] Tsai R Y and Hua M Y 1996 Appl. Opt. 35 5073
[9] Shen Z C, Shao J D, Wang Y J and Fan Z X 2005 Acta Phys. Sin. 54 4842 (in Chinese)
[10] Bartzsch H, Lange S, Frach P and Goedicke K 2004 Surf. Coat. Technol. 180--181 616
[11] Shen Z C, Shao J D, Wang Y J and Fan Z X 2005 Acta Phys. Sin. 54 3069 (in Chinese)
[12] Kong W J, Shen Z C, Wang S H, Shao J D, Fan Z X and Lu C J 2010 Chin. Phys. B 19 044210
[13] Berger M G, Arens-Fischer R, Thönissen M, Kr黦er M, Billat S, L黷h H, Hilbrich S, Theiß W and Grosse P 1997 Thin Solid Films 297 237
[14] Ishikura N, Fujii M, Nishida K, Hayashi S, Diener J, Mizuhata M and Deki S 2008 Opt. Mat. 31 102
[15] Agarwal V and Río J A 2003 Appl. Phys. Lett. 82 1512
[16] Bruyant A, L閞ondel G, Reece P J and Gal M 2003 Appl. Phys. Lett. 82 3227
[17] Abu-Safia H A, Al-Sharif A I and Abu Aljarayesh I O 1993 Appl. Opt. 32 4831
[18] Lee C C, Tang C J and Wu J Y 2006 Appl. Opt. 45 1333
[19] Zhang J C, Fang M, Shao Y C, Jin Y X and He H B 2011 Chin. Phys. B 20 094212
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[5] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[6] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[7] Broadband topological valley-projected edge-states transport in composite structure phononic crystal
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2021, 30(8): 084302.
[8] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[9] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
[10] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[11] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[12] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[13] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[14] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[15] Pressure dependent modulation instability in photonic crystal fiber filled with argon gas
He-Lin Wang(王河林), Ai-Jun Yang(杨爱军), XiaoLong Wang(王肖隆), Bin Wu(吴彬), Yi Ruan(阮乂). Chin. Phys. B, 2018, 27(9): 094221.
No Suggested Reading articles found!