Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050504    DOI: 10.1088/1674-1056/21/5/050504
GENERAL Prev   Next  

Dynamics of particles around a pseudo-Newtonian Kerr black hole with halos

Wang Ying(王颖) and Wu Xin(伍歆)
Department of Physics, Nanchang University, Nanchang 330031, China
Abstract  The regular and chaotic dynamics of test particles in a superposed field between a pseudo-Newtonian Kerr black hole and quadrupolar halos is detailed. In particular, the dependence of dynamics on the quadrupolar parameter of the halos and the spin angular momentum of the rotating black hole is studied. It is found that the small quadrupolar moment, in contrast with the spin angular momentum, does not have a great effect on the stability and radii of the innermost stable circular orbits of these test particles. In addition, chaos mainly occurs for small absolute values of the rotating parameters, and does not exist for the maximum counter-rotating case under some certain initial conditions and parameters. This means that the rotating parameters of the black hole weaken the chaotic properties. It is also found that the counter-rotating system is more unstable than the co-rotating one. Furthermore, chaos is absent for small absolute values of the quadrupoles, and the onset of chaos is easier for the prolate halos than for the oblate ones.
Keywords:  pseudo-Newtonian potential      Kerr black hole      chaos  
Received:  18 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  04.70.-s (Physics of black holes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10873007, 11173012, and 11178002).

Cite this article: 

Wang Ying(王颖) and Wu Xin(伍歆) Dynamics of particles around a pseudo-Newtonian Kerr black hole with halos 2012 Chin. Phys. B 21 050504

[1] Chen J H and Wang Y J 2003 Chin. Phys 12 836
[2] Chen J H and Wang Y J 2004 Chin. Phys 13 583
[3] Chen J H and Wang Y J 2005 Chin. Phys 14 1282
[4] Chen J H and Wang Y J 2006 Chin. Phys 15 1705
[5] Zhong S Y and Wu X 2011 Acta Phys. Sin 60 090402 (in Chinese)
[6] Contopoulos G, Voglis N and Efthymiopoulos C 1999 Celest. Mech. Dyn. Astron 73 1
[7] Vieira W M and Letelier P S 1997 Phys. Lett A 228 22
[8] Wu X and Zhang H 2006 Astrophys. J 652 1466
[9] Takahashi M and Koyama H 2009 Astrophys. J 693 472
[10] Suzuki S and Maeda K I 1997 Phys. Rev D 55 4848
[11] Verhaaren C and Hirschmann E W 2010 Phys. Rev. D 81 124034
[12] Hartl M D 2003 Phys. Rev D 67 024005
[13] Wu X and Xie Y 2010 Phys. Rev D 81 084045
[14] Wu X 2010 Res. Astron. Astrophys 10 211
[15] Ma D Z, Wu X and Zhong S Y 2009 Res. Astron. Astrophys 9 1185
[16] Paczyński B and Wiita P 1980 Astron. Astrophys 88 23
[17] Gu閞on E and Letelier P S 2001 Astron. Astrophys 368 716
[18] Steklain A F and Letelier P S 2006 Phys. Lett A 352 398
[19] Semer醟 O and Karas V 1999 Astron. Astrophys 343 325
[20] Mukhopadhyay B 2002 Astrophys. J 581 427
[21] Artemova I V, Björnsson G and Novikov I D 1996 Astrophys. J 461 565
[22] Steklain A F and Letelier P S 2009 Phys. Lett A 373 188
[23] Wang Y and Wu X 2011 Commun. Theor. Phys 56 1045
[24] Xu J, Wu X and Ma D Z 2010 PRAMANA-J. Phys 74 907
[25] Di G H, Xu Y, Xu W and Gu R C 2011 Acta Phys. Sin 60 020504 (in Chinese)
[26] Feng C W, Cai L, Kang Q and Zhang L S 2011 Acta Phys. Sin 60 030503 (in Chinese)
[27] Zhang X D and Cai L J 2011 Acta Phys. Sin 60 110511 (in Chinese)
[28] Binney J and Spergel D 1982 Astrophys. J 252 308
[29] Froeschl? C, Lega E and Gonczi R 1997 Celest. Mech. Dyn. Astron 67 41
[30] Sun K H, Liu X and Zhu C X 2010 Chin. Phys B 19 110510
[31] Froeschl? C and Lega E 2000 Celest. Mech. Dyn. Astron 78 167
[32] Wu X, Huang T Y and Zhang H 2006 Phys. Rev D 74 083001
[33] Li R and Wu X 2010 Acta Phys. Sin 59 7135 (in Chinese)
[34] Li R and Wu X 2011 Eur. Phys. J. Plus 126 73
[35] Wang Y Z and Wu X 2011 Class. Quantum Grav 28 025010
[36] Binney J and Tremaine S 1987 Galactic Dynamics (Princeton:Princeton University Press) pp. 10--400
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[13] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!