CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Theoretical prediction of structural, electronic and optical properties of quaternary alloy Zn1-xBexSySe1-y |
Hacini Ka), Meradji Ha)†, Ghemid Sa), and El Haj Hassan Fb) |
a. Laboratoire LPR, Département de Physique, Faculté des Sciences, Université de Annaba, Algeria;
b. Laboratoire de physique des Matériaux, Faculté des Sciences, Université Libanaise, Elhadath, Beirut, Lebanon |
|
|
Abstract Within density functional theory based on the full potential-linearized augmented plane wave method, we carry out the first-principles calculation of the structural, electronic, and optical properties of the zinc blende quaternary alloy Zn1-xBexSySe1-y. The Perdew-Burke-Ernzerhof generalized gradient approximation based on the optimization of total energy and the Engel-Vosko generalized gradient approximation based on the optimization of the corresponding potential are used. Our investigation on the effect of the composition on lattice constants, bulk modulus, band gap, optical dielectric constant, and refractive index shows a non-linear dependence. The energy gap Eg(x, y) has been determined over the entire compositions x and y. In addition, the energy band gap of the technologically important quaternary alloy Zn1-xBexSySe1-y in conditions of being lattice matched to ZnS substrate has been investigated. It is noteworthy that the present work is the first theoretical study of the quaternary alloy of interest.
|
Received: 24 May 2011
Revised: 07 October 2011
Accepted manuscript online:
|
PACS:
|
61.66.Dk
|
(Alloys )
|
|
71.15.Ap
|
(Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Corresponding Authors:
Meradji H,hmeradji@yahoo.fr
E-mail: hmeradji@yahoo.fr
|
Cite this article:
Hacini K, Meradji H, Ghemid S, and El Haj Hassan F Theoretical prediction of structural, electronic and optical properties of quaternary alloy Zn1-xBexSySe1-y 2012 Chin. Phys. B 21 036102
|
[1] Long D and Schmit J L 1970 Semiconductors and Semi-metals (New York: Academic Press) p.175[2] Chauvet C, Bousquet V, Tourni? E and Faurie J P 1999 J. Electron. Mater. 28 662[3] Waag A, Fischer F, Schull K, Barron T, Lugauer H J, Litz T, Zehneder U, Ossau W, Gerhard T, Keim M, Reuscher G and Landwehr G 1997 Appl. Phys. Lett. 70 280[4] Zhang J Y, Shem D Z, Fan X W, Yang B J and Zheng Z H 2000 J. Cryst. Growth 214-215 100[5] Munoz A, Rodriguez-Hernandez P and Mujica A 1996 Phys. Stat. Sol. 198 439[6] Waag A, Fischer F, Lugauer H J, Litz T, Laubender J, Lunz U, Zehneder U, Ossau W, Gerhard T, Moller M and Landwehr G 1996 J. Appl. Phys. 80 792[7] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz (Techn. Universität, Austria, Vienna)[8] Perdew J P, Burke S and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396(E)[9] Engel E and Vosko S H 1993 Phys. Rev. B 47 13164[10] Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 5390[11] Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B 57 2257[12] Narayana C, Nesamong V J and Ruoff A L 1997 Phys. Rev. B 56 14338[13] Luo H, Ghandehair K, Greene R G, Ruoff A L, Trail S S and Disalvo F J 1995 Phys. Rev. B 52 7058[14] Ves S, Schwartz U, Christensen N E, Syassen K and Cardona M 1990 Phys. Rev. B 42 9113[15] El Haj Hassan F, Amrani B and Bahsoun F 2007 Physica B 391 365[16] Lee S G and Chang K J 995 Phys. Rev. B 52 1918[17] Baaziz H, Charifi Z, El Haj Hassan F, Hashemifar S J and Akbarzadeh H 2006 Phys. Stat. Sol. (b) 243 1296[18] El Haj Hassan F 2005 Phys. Stat. Sol. (b) 242 911[19] Kalpana G, Pari G, Mookerjee A and Bhattacharyya A K 1998 Int. J. Mod. Phys. B 12 1975[20] Lee B H 1970 J. Appl. Phys. 44 2984[21] Yim W M, Dismukes J P, Stofko E J and Poff R J 1972 J. Phys. Chem. Solids 33 501[22] El Haj Hassan F, Amrani B and Bahsoun F 2007 J. Phys.: Condensed Matter 19 386234[23] El Haj Hassan F and Akbarzadeh H 2006 Comput. Mater. Sci. 35 423[24] Okoye C M I 2004 Eu. Phys. J. B 39 5[25] Ozaki S and Adachi S 1994 J. Appl. Phys. 75 7470[26] Vegard L 1921 Z. Phys. 5 17[27] Ameri M, Rached D, Rabah M, El Haj Hassan F, Khenata R and Doui-Aici M 2007 Phys. Stat. Sol. (b) 245 106[28] Jobst J, Hommel D, Lunz U, Gerhard T and Landwehr G 1996 Appl. Phys. Lett. 69 97[29] Chauvet C, Tourni? E and Faurie J P 2000 Phys. Rev. B 61 5332[30] Ravindra N M, Ganapathy P and Choi J 2007 Infrared. Phys. Technol. 50 21 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|