Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 036102    DOI: 10.1088/1674-1056/21/3/036102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical prediction of structural, electronic and optical properties of quaternary alloy Zn1-xBexSySe1-y

Hacini Ka), Meradji Ha)†, Ghemid Sa), and El Haj Hassan Fb)
a. Laboratoire LPR, Département de Physique, Faculté des Sciences, Université de Annaba, Algeria;
b. Laboratoire de physique des Matériaux, Faculté des Sciences, Université Libanaise, Elhadath, Beirut, Lebanon
Abstract  Within density functional theory based on the full potential-linearized augmented plane wave method, we carry out the first-principles calculation of the structural, electronic, and optical properties of the zinc blende quaternary alloy Zn1-xBexSySe1-y. The Perdew-Burke-Ernzerhof generalized gradient approximation based on the optimization of total energy and the Engel-Vosko generalized gradient approximation based on the optimization of the corresponding potential are used. Our investigation on the effect of the composition on lattice constants, bulk modulus, band gap, optical dielectric constant, and refractive index shows a non-linear dependence. The energy gap Eg(x, y) has been determined over the entire compositions x and y. In addition, the energy band gap of the technologically important quaternary alloy Zn1-xBexSySe1-y in conditions of being lattice matched to ZnS substrate has been investigated. It is noteworthy that the present work is the first theoretical study of the quaternary alloy of interest.
Keywords:  density functional theory      full potential-linearized augmented plane wave method      quaternary alloy      lattice-matched substrate  
Received:  24 May 2011      Revised:  07 October 2011      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  Meradji H,hmeradji@yahoo.fr     E-mail:  hmeradji@yahoo.fr

Cite this article: 

Hacini K, Meradji H, Ghemid S, and El Haj Hassan F Theoretical prediction of structural, electronic and optical properties of quaternary alloy Zn1-xBexSySe1-y 2012 Chin. Phys. B 21 036102

[1] Long D and Schmit J L 1970 Semiconductors and Semi-metals (New York: Academic Press) p.175
[2] Chauvet C, Bousquet V, Tourni? E and Faurie J P 1999 J. Electron. Mater. 28 662
[3] Waag A, Fischer F, Schull K, Barron T, Lugauer H J, Litz T, Zehneder U, Ossau W, Gerhard T, Keim M, Reuscher G and Landwehr G 1997 Appl. Phys. Lett. 70 280
[4] Zhang J Y, Shem D Z, Fan X W, Yang B J and Zheng Z H 2000 J. Cryst. Growth 214-215 100
[5] Munoz A, Rodriguez-Hernandez P and Mujica A 1996 Phys. Stat. Sol. 198 439
[6] Waag A, Fischer F, Lugauer H J, Litz T, Laubender J, Lunz U, Zehneder U, Ossau W, Gerhard T, Moller M and Landwehr G 1996 J. Appl. Phys. 80 792
[7] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz (Techn. Universität, Austria, Vienna)
[8] Perdew J P, Burke S and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396(E)
[9] Engel E and Vosko S H 1993 Phys. Rev. B 47 13164
[10] Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 5390
[11] Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B 57 2257
[12] Narayana C, Nesamong V J and Ruoff A L 1997 Phys. Rev. B 56 14338
[13] Luo H, Ghandehair K, Greene R G, Ruoff A L, Trail S S and Disalvo F J 1995 Phys. Rev. B 52 7058
[14] Ves S, Schwartz U, Christensen N E, Syassen K and Cardona M 1990 Phys. Rev. B 42 9113
[15] El Haj Hassan F, Amrani B and Bahsoun F 2007 Physica B 391 365
[16] Lee S G and Chang K J 995 Phys. Rev. B 52 1918
[17] Baaziz H, Charifi Z, El Haj Hassan F, Hashemifar S J and Akbarzadeh H 2006 Phys. Stat. Sol. (b) 243 1296
[18] El Haj Hassan F 2005 Phys. Stat. Sol. (b) 242 911
[19] Kalpana G, Pari G, Mookerjee A and Bhattacharyya A K 1998 Int. J. Mod. Phys. B 12 1975
[20] Lee B H 1970 J. Appl. Phys. 44 2984
[21] Yim W M, Dismukes J P, Stofko E J and Poff R J 1972 J. Phys. Chem. Solids 33 501
[22] El Haj Hassan F, Amrani B and Bahsoun F 2007 J. Phys.: Condensed Matter 19 386234
[23] El Haj Hassan F and Akbarzadeh H 2006 Comput. Mater. Sci. 35 423
[24] Okoye C M I 2004 Eu. Phys. J. B 39 5
[25] Ozaki S and Adachi S 1994 J. Appl. Phys. 75 7470
[26] Vegard L 1921 Z. Phys. 5 17
[27] Ameri M, Rached D, Rabah M, El Haj Hassan F, Khenata R and Doui-Aici M 2007 Phys. Stat. Sol. (b) 245 106
[28] Jobst J, Hommel D, Lunz U, Gerhard T and Landwehr G 1996 Appl. Phys. Lett. 69 97
[29] Chauvet C, Tourni? E and Faurie J P 2000 Phys. Rev. B 61 5332
[30] Ravindra N M, Ganapathy P and Choi J 2007 Infrared. Phys. Technol. 50 21
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!